ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfre1 Unicode version

Theorem nfre1 2407
Description:  x is not free in  E. x  e.  A ph. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfre1  |-  F/ x E. x  e.  A  ph

Proof of Theorem nfre1
StepHypRef Expression
1 df-rex 2354 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 nfe1 1425 . 2  |-  F/ x E. x ( x  e.  A  /\  ph )
31, 2nfxfr 1403 1  |-  F/ x E. x  e.  A  ph
Colors of variables: wff set class
Syntax hints:    /\ wa 102   F/wnf 1389   E.wex 1421    e. wcel 1433   E.wrex 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-rex 2354
This theorem is referenced by:  nfiu1  3708  fun11iun  5167  eusvobj2  5518  prarloclem3step  6686  prmuloc2  6757  ltexprlemm  6790  caucvgprprlemaddq  6898  caucvgsrlemgt1  6971  supinfneg  8683  infsupneg  8684  lbzbi  8701  divalglemeunn  10321  divalglemeuneg  10323  bezoutlemmain  10387  bezout  10400
  Copyright terms: Public domain W3C validator