ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemm GIF version

Theorem ltexprlemm 6790
Description: Our constructed difference is inhabited. Lemma for ltexpri 6803. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemm (𝐴<P 𝐵 → (∃𝑞Q 𝑞 ∈ (1st𝐶) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 6695 . . . . . . . . 9 <P ⊆ (P × P)
21brel 4410 . . . . . . . 8 (𝐴<P 𝐵 → (𝐴P𝐵P))
3 ltdfpr 6696 . . . . . . . . 9 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))))
43biimpd 142 . . . . . . . 8 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))))
52, 4mpcom 36 . . . . . . 7 (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))
6 simprrl 505 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → 𝑦 ∈ (2nd𝐴))
72simprd 112 . . . . . . . . . . . . 13 (𝐴<P 𝐵𝐵P)
8 prop 6665 . . . . . . . . . . . . . . . . . 18 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
9 prnmaxl 6678 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤)
108, 9sylan 277 . . . . . . . . . . . . . . . . 17 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤)
11 ltexnqi 6599 . . . . . . . . . . . . . . . . . 18 (𝑦 <Q 𝑤 → ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
1211reximi 2458 . . . . . . . . . . . . . . . . 17 (∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤 → ∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
1310, 12syl 14 . . . . . . . . . . . . . . . 16 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
14 df-rex 2354 . . . . . . . . . . . . . . . 16 (∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤 ↔ ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1513, 14sylib 120 . . . . . . . . . . . . . . 15 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
16 r19.42v 2511 . . . . . . . . . . . . . . . 16 (∃𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) ↔ (𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1716exbii 1536 . . . . . . . . . . . . . . 15 (∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) ↔ ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1815, 17sylibr 132 . . . . . . . . . . . . . 14 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤))
19 eleq1 2141 . . . . . . . . . . . . . . . . 17 ((𝑦 +Q 𝑞) = 𝑤 → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ↔ 𝑤 ∈ (1st𝐵)))
2019biimparc 293 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → (𝑦 +Q 𝑞) ∈ (1st𝐵))
2120reximi 2458 . . . . . . . . . . . . . . 15 (∃𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2221exlimiv 1529 . . . . . . . . . . . . . 14 (∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2318, 22syl 14 . . . . . . . . . . . . 13 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
247, 23sylan 277 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑦 ∈ (1st𝐵)) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2524adantrl 461 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2625adantrl 461 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
276, 26jca 300 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
2827expr 367 . . . . . . . 8 ((𝐴<P 𝐵𝑦Q) → ((𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)) → (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))))
2928reximdva 2463 . . . . . . 7 (𝐴<P 𝐵 → (∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)) → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))))
305, 29mpd 13 . . . . . 6 (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
31 r19.42v 2511 . . . . . . 7 (∃𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3231rexbii 2373 . . . . . 6 (∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3330, 32sylibr 132 . . . . 5 (𝐴<P 𝐵 → ∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
34 rexcom 2518 . . . . 5 (∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3533, 34sylib 120 . . . 4 (𝐴<P 𝐵 → ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
362simpld 110 . . . . . . . . . . . 12 (𝐴<P 𝐵𝐴P)
37 prop 6665 . . . . . . . . . . . . 13 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
38 elprnqu 6672 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
3937, 38sylan 277 . . . . . . . . . . . 12 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
4036, 39sylan 277 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴)) → 𝑦Q)
4140ex 113 . . . . . . . . . 10 (𝐴<P 𝐵 → (𝑦 ∈ (2nd𝐴) → 𝑦Q))
4241pm4.71rd 386 . . . . . . . . 9 (𝐴<P 𝐵 → (𝑦 ∈ (2nd𝐴) ↔ (𝑦Q𝑦 ∈ (2nd𝐴))))
4342anbi1d 452 . . . . . . . 8 (𝐴<P 𝐵 → ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ((𝑦Q𝑦 ∈ (2nd𝐴)) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
44 anass 393 . . . . . . . 8 (((𝑦Q𝑦 ∈ (2nd𝐴)) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
4543, 44syl6bb 194 . . . . . . 7 (𝐴<P 𝐵 → ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
4645exbidv 1746 . . . . . 6 (𝐴<P 𝐵 → (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
4746rexbidv 2369 . . . . 5 (𝐴<P 𝐵 → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
48 df-rex 2354 . . . . . 6 (∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
4948rexbii 2373 . . . . 5 (∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5047, 49syl6bbr 196 . . . 4 (𝐴<P 𝐵 → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5135, 50mpbird 165 . . 3 (𝐴<P 𝐵 → ∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
52 ltexprlem.1 . . . . . 6 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
5352ltexprlemell 6788 . . . . 5 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5453rexbii 2373 . . . 4 (∃𝑞Q 𝑞 ∈ (1st𝐶) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
55 ssid 3018 . . . . 5 QQ
56 rexss 3061 . . . . 5 (QQ → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
5755, 56ax-mp 7 . . . 4 (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5854, 57bitr4i 185 . . 3 (∃𝑞Q 𝑞 ∈ (1st𝐶) ↔ ∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
5951, 58sylibr 132 . 2 (𝐴<P 𝐵 → ∃𝑞Q 𝑞 ∈ (1st𝐶))
60 nfv 1461 . . 3 𝑟 𝐴<P 𝐵
61 nfre1 2407 . . 3 𝑟𝑟Q 𝑟 ∈ (2nd𝐶)
62 prmu 6668 . . . . 5 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
63 rexex 2410 . . . . 5 (∃𝑟Q 𝑟 ∈ (2nd𝐵) → ∃𝑟 𝑟 ∈ (2nd𝐵))
6462, 63syl 14 . . . 4 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑟 𝑟 ∈ (2nd𝐵))
657, 8, 643syl 17 . . 3 (𝐴<P 𝐵 → ∃𝑟 𝑟 ∈ (2nd𝐵))
66 elprnqu 6672 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑟 ∈ (2nd𝐵)) → 𝑟Q)
678, 66sylan 277 . . . . . 6 ((𝐵P𝑟 ∈ (2nd𝐵)) → 𝑟Q)
687, 67sylan 277 . . . . 5 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → 𝑟Q)
69 prml 6667 . . . . . . . . 9 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑦Q 𝑦 ∈ (1st𝐴))
7037, 69syl 14 . . . . . . . 8 (𝐴P → ∃𝑦Q 𝑦 ∈ (1st𝐴))
71 rexex 2410 . . . . . . . 8 (∃𝑦Q 𝑦 ∈ (1st𝐴) → ∃𝑦 𝑦 ∈ (1st𝐴))
7236, 70, 713syl 17 . . . . . . 7 (𝐴<P 𝐵 → ∃𝑦 𝑦 ∈ (1st𝐴))
7372adantr 270 . . . . . 6 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑦 𝑦 ∈ (1st𝐴))
74683adant3 958 . . . . . . . . 9 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟Q)
75 simp3 940 . . . . . . . . . 10 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 ∈ (1st𝐴))
76 elprnql 6671 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
7737, 76sylan 277 . . . . . . . . . . . . . 14 ((𝐴P𝑦 ∈ (1st𝐴)) → 𝑦Q)
7836, 77sylan 277 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴)) → 𝑦Q)
79783adant2 957 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦Q)
80 addcomnqg 6571 . . . . . . . . . . . 12 ((𝑟Q𝑦Q) → (𝑟 +Q 𝑦) = (𝑦 +Q 𝑟))
8174, 79, 80syl2anc 403 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 +Q 𝑦) = (𝑦 +Q 𝑟))
82 ltaddnq 6597 . . . . . . . . . . . . 13 ((𝑟Q𝑦Q) → 𝑟 <Q (𝑟 +Q 𝑦))
8374, 79, 82syl2anc 403 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 <Q (𝑟 +Q 𝑦))
84 prcunqu 6675 . . . . . . . . . . . . . . 15 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
858, 84sylan 277 . . . . . . . . . . . . . 14 ((𝐵P𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
867, 85sylan 277 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
87863adant3 958 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
8883, 87mpd 13 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 +Q 𝑦) ∈ (2nd𝐵))
8981, 88eqeltrrd 2156 . . . . . . . . . 10 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑦 +Q 𝑟) ∈ (2nd𝐵))
90 19.8a 1522 . . . . . . . . . 10 ((𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
9175, 89, 90syl2anc 403 . . . . . . . . 9 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
9274, 91jca 300 . . . . . . . 8 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
9352ltexprlemelu 6789 . . . . . . . 8 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
9492, 93sylibr 132 . . . . . . 7 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐶))
95943expa 1138 . . . . . 6 (((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐶))
9673, 95exlimddv 1819 . . . . 5 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐶))
97 19.8a 1522 . . . . 5 ((𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
9868, 96, 97syl2anc 403 . . . 4 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
99 df-rex 2354 . . . 4 (∃𝑟Q 𝑟 ∈ (2nd𝐶) ↔ ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
10098, 99sylibr 132 . . 3 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑟Q 𝑟 ∈ (2nd𝐶))
10160, 61, 65, 100exlimdd 1793 . 2 (𝐴<P 𝐵 → ∃𝑟Q 𝑟 ∈ (2nd𝐶))
10259, 101jca 300 1 (𝐴<P 𝐵 → (∃𝑞Q 𝑞 ∈ (1st𝐶) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wex 1421  wcel 1433  wrex 2349  {crab 2352  wss 2973  cop 3401   class class class wbr 3785  cfv 4922  (class class class)co 5532  1st c1st 5785  2nd c2nd 5786  Qcnq 6470   +Q cplq 6472   <Q cltq 6475  Pcnp 6481  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-ltnqqs 6543  df-inp 6656  df-iltp 6660
This theorem is referenced by:  ltexprlempr  6798
  Copyright terms: Public domain W3C validator