ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfss GIF version

Theorem nfss 2992
Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴𝐵. (Contributed by NM, 27-Dec-1996.)
Hypotheses
Ref Expression
dfss2f.1 𝑥𝐴
dfss2f.2 𝑥𝐵
Assertion
Ref Expression
nfss 𝑥 𝐴𝐵

Proof of Theorem nfss
StepHypRef Expression
1 dfss2f.1 . . 3 𝑥𝐴
2 dfss2f.2 . . 3 𝑥𝐵
31, 2dfss3f 2991 . 2 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
4 nfra1 2397 . 2 𝑥𝑥𝐴 𝑥𝐵
53, 4nfxfr 1403 1 𝑥 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  wnf 1389  wcel 1433  wnfc 2206  wral 2348  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-in 2979  df-ss 2986
This theorem is referenced by:  nfpw  3394  ssiun2s  3722  triun  3888  ssopab2b  4031  nffrfor  4103  tfis  4324  nfrel  4443  nffun  4944  nff  5063  fvmptssdm  5276  ssoprab2b  5582  nfsum1  10193  nfsum  10194
  Copyright terms: Public domain W3C validator