ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffun GIF version

Theorem nffun 4944
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1 𝑥𝐹
Assertion
Ref Expression
nffun 𝑥Fun 𝐹

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 4924 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
2 nffun.1 . . . 4 𝑥𝐹
32nfrel 4443 . . 3 𝑥Rel 𝐹
42nfcnv 4532 . . . . 5 𝑥𝐹
52, 4nfco 4519 . . . 4 𝑥(𝐹𝐹)
6 nfcv 2219 . . . 4 𝑥 I
75, 6nfss 2992 . . 3 𝑥(𝐹𝐹) ⊆ I
83, 7nfan 1497 . 2 𝑥(Rel 𝐹 ∧ (𝐹𝐹) ⊆ I )
91, 8nfxfr 1403 1 𝑥Fun 𝐹
Colors of variables: wff set class
Syntax hints:  wa 102  wnf 1389  wnfc 2206  wss 2973   I cid 4043  ccnv 4362  ccom 4367  Rel wrel 4368  Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-rel 4370  df-cnv 4371  df-co 4372  df-fun 4924
This theorem is referenced by:  nffn  5015  nff1  5110  fliftfun  5456
  Copyright terms: Public domain W3C validator