| Step | Hyp | Ref
| Expression |
| 1 | | df-sum 10191 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵), ℂ)‘𝑚)))) |
| 2 | | nfcv 2219 |
. . . . 5
⊢
Ⅎ𝑥ℤ |
| 3 | | nfsum.1 |
. . . . . . 7
⊢
Ⅎ𝑥𝐴 |
| 4 | | nfcv 2219 |
. . . . . . 7
⊢
Ⅎ𝑥(ℤ≥‘𝑚) |
| 5 | 3, 4 | nfss 2992 |
. . . . . 6
⊢
Ⅎ𝑥 𝐴 ⊆
(ℤ≥‘𝑚) |
| 6 | | nfcv 2219 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑚 |
| 7 | | nfcv 2219 |
. . . . . . . 8
⊢
Ⅎ𝑥
+ |
| 8 | 3 | nfcri 2213 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑛 ∈ 𝐴 |
| 9 | | nfcv 2219 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑛 |
| 10 | | nfsum.2 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐵 |
| 11 | 9, 10 | nfcsb 2940 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑛 / 𝑘⦌𝐵 |
| 12 | | nfcv 2219 |
. . . . . . . . . 10
⊢
Ⅎ𝑥0 |
| 13 | 8, 11, 12 | nfif 3377 |
. . . . . . . . 9
⊢
Ⅎ𝑥if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) |
| 14 | 2, 13 | nfmpt 3870 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
| 15 | | nfcv 2219 |
. . . . . . . 8
⊢
Ⅎ𝑥ℂ |
| 16 | 6, 7, 14, 15 | nfiseq 9438 |
. . . . . . 7
⊢
Ⅎ𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) |
| 17 | | nfcv 2219 |
. . . . . . 7
⊢
Ⅎ𝑥
⇝ |
| 18 | | nfcv 2219 |
. . . . . . 7
⊢
Ⅎ𝑥𝑧 |
| 19 | 16, 17, 18 | nfbr 3829 |
. . . . . 6
⊢
Ⅎ𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑧 |
| 20 | 5, 19 | nfan 1497 |
. . . . 5
⊢
Ⅎ𝑥(𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑧) |
| 21 | 2, 20 | nfrexya 2405 |
. . . 4
⊢
Ⅎ𝑥∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑧) |
| 22 | | nfcv 2219 |
. . . . 5
⊢
Ⅎ𝑥ℕ |
| 23 | | nfcv 2219 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑓 |
| 24 | | nfcv 2219 |
. . . . . . . 8
⊢
Ⅎ𝑥(1...𝑚) |
| 25 | 23, 24, 3 | nff1o 5144 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑓:(1...𝑚)–1-1-onto→𝐴 |
| 26 | | nfcv 2219 |
. . . . . . . . . 10
⊢
Ⅎ𝑥1 |
| 27 | | nfcv 2219 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑓‘𝑛) |
| 28 | 27, 10 | nfcsb 2940 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋(𝑓‘𝑛) / 𝑘⦌𝐵 |
| 29 | 22, 28 | nfmpt 3870 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) |
| 30 | 26, 7, 29, 15 | nfiseq 9438 |
. . . . . . . . 9
⊢
Ⅎ𝑥seq1(
+ , (𝑛 ∈ ℕ
↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵), ℂ) |
| 31 | 30, 6 | nffv 5205 |
. . . . . . . 8
⊢
Ⅎ𝑥(seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵), ℂ)‘𝑚) |
| 32 | 31 | nfeq2 2230 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵), ℂ)‘𝑚) |
| 33 | 25, 32 | nfan 1497 |
. . . . . 6
⊢
Ⅎ𝑥(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵), ℂ)‘𝑚)) |
| 34 | 33 | nfex 1568 |
. . . . 5
⊢
Ⅎ𝑥∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵), ℂ)‘𝑚)) |
| 35 | 22, 34 | nfrexya 2405 |
. . . 4
⊢
Ⅎ𝑥∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵), ℂ)‘𝑚)) |
| 36 | 21, 35 | nfor 1506 |
. . 3
⊢
Ⅎ𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵), ℂ)‘𝑚))) |
| 37 | 36 | nfiotaxy 4891 |
. 2
⊢
Ⅎ𝑥(℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵), ℂ)‘𝑚)))) |
| 38 | 1, 37 | nfcxfr 2216 |
1
⊢
Ⅎ𝑥Σ𝑘 ∈ 𝐴 𝐵 |