ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsum GIF version

Theorem nfsum 10194
Description: Bound-variable hypothesis builder for sum: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in Σ𝑘𝐴𝐵. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
nfsum.1 𝑥𝐴
nfsum.2 𝑥𝐵
Assertion
Ref Expression
nfsum 𝑥Σ𝑘𝐴 𝐵

Proof of Theorem nfsum
Dummy variables 𝑓 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 10191 . 2 Σ𝑘𝐴 𝐵 = (℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)), ℂ) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵), ℂ)‘𝑚))))
2 nfcv 2219 . . . . 5 𝑥
3 nfsum.1 . . . . . . 7 𝑥𝐴
4 nfcv 2219 . . . . . . 7 𝑥(ℤ𝑚)
53, 4nfss 2992 . . . . . 6 𝑥 𝐴 ⊆ (ℤ𝑚)
6 nfcv 2219 . . . . . . . 8 𝑥𝑚
7 nfcv 2219 . . . . . . . 8 𝑥 +
83nfcri 2213 . . . . . . . . . 10 𝑥 𝑛𝐴
9 nfcv 2219 . . . . . . . . . . 11 𝑥𝑛
10 nfsum.2 . . . . . . . . . . 11 𝑥𝐵
119, 10nfcsb 2940 . . . . . . . . . 10 𝑥𝑛 / 𝑘𝐵
12 nfcv 2219 . . . . . . . . . 10 𝑥0
138, 11, 12nfif 3377 . . . . . . . . 9 𝑥if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
142, 13nfmpt 3870 . . . . . . . 8 𝑥(𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
15 nfcv 2219 . . . . . . . 8 𝑥
166, 7, 14, 15nfiseq 9438 . . . . . . 7 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)), ℂ)
17 nfcv 2219 . . . . . . 7 𝑥
18 nfcv 2219 . . . . . . 7 𝑥𝑧
1916, 17, 18nfbr 3829 . . . . . 6 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)), ℂ) ⇝ 𝑧
205, 19nfan 1497 . . . . 5 𝑥(𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)), ℂ) ⇝ 𝑧)
212, 20nfrexya 2405 . . . 4 𝑥𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)), ℂ) ⇝ 𝑧)
22 nfcv 2219 . . . . 5 𝑥
23 nfcv 2219 . . . . . . . 8 𝑥𝑓
24 nfcv 2219 . . . . . . . 8 𝑥(1...𝑚)
2523, 24, 3nff1o 5144 . . . . . . 7 𝑥 𝑓:(1...𝑚)–1-1-onto𝐴
26 nfcv 2219 . . . . . . . . . 10 𝑥1
27 nfcv 2219 . . . . . . . . . . . 12 𝑥(𝑓𝑛)
2827, 10nfcsb 2940 . . . . . . . . . . 11 𝑥(𝑓𝑛) / 𝑘𝐵
2922, 28nfmpt 3870 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
3026, 7, 29, 15nfiseq 9438 . . . . . . . . 9 𝑥seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵), ℂ)
3130, 6nffv 5205 . . . . . . . 8 𝑥(seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵), ℂ)‘𝑚)
3231nfeq2 2230 . . . . . . 7 𝑥 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵), ℂ)‘𝑚)
3325, 32nfan 1497 . . . . . 6 𝑥(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵), ℂ)‘𝑚))
3433nfex 1568 . . . . 5 𝑥𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵), ℂ)‘𝑚))
3522, 34nfrexya 2405 . . . 4 𝑥𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵), ℂ)‘𝑚))
3621, 35nfor 1506 . . 3 𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)), ℂ) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵), ℂ)‘𝑚)))
3736nfiotaxy 4891 . 2 𝑥(℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)), ℂ) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵), ℂ)‘𝑚))))
381, 37nfcxfr 2216 1 𝑥Σ𝑘𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 102  wo 661   = wceq 1284  wex 1421  wcel 1433  wnfc 2206  wrex 2349  csb 2908  wss 2973  ifcif 3351   class class class wbr 3785  cmpt 3839  cio 4885  1-1-ontowf1o 4921  cfv 4922  (class class class)co 5532  cc 6979  0cc0 6981  1c1 6982   + caddc 6984  cn 8039  cz 8351  cuz 8619  ...cfz 9029  seqcseq 9431  cli 10117  Σcsu 10190
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-if 3352  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-recs 5943  df-frec 6001  df-iseq 9432  df-sum 10191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator