![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeluu | GIF version |
Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
opeluu.1 | ⊢ 𝐴 ∈ V |
opeluu.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opeluu | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (𝐴 ∈ ∪ ∪ 𝐶 ∧ 𝐵 ∈ ∪ ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeluu.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | prid1 3498 | . . 3 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
3 | opeluu.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
4 | 1, 3 | opi2 3988 | . . . 4 ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
5 | elunii 3606 | . . . 4 ⊢ (({𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) → {𝐴, 𝐵} ∈ ∪ 𝐶) | |
6 | 4, 5 | mpan 414 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → {𝐴, 𝐵} ∈ ∪ 𝐶) |
7 | elunii 3606 | . . 3 ⊢ ((𝐴 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ∈ ∪ 𝐶) → 𝐴 ∈ ∪ ∪ 𝐶) | |
8 | 2, 6, 7 | sylancr 405 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ ∪ ∪ 𝐶) |
9 | 3 | prid2 3499 | . . 3 ⊢ 𝐵 ∈ {𝐴, 𝐵} |
10 | elunii 3606 | . . 3 ⊢ ((𝐵 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ∈ ∪ 𝐶) → 𝐵 ∈ ∪ ∪ 𝐶) | |
11 | 9, 6, 10 | sylancr 405 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ∪ ∪ 𝐶) |
12 | 8, 11 | jca 300 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (𝐴 ∈ ∪ ∪ 𝐶 ∧ 𝐵 ∈ ∪ ∪ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1433 Vcvv 2601 {cpr 3399 〈cop 3401 ∪ cuni 3601 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 |
This theorem is referenced by: asymref 4730 |
Copyright terms: Public domain | W3C validator |