ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnex GIF version

Theorem snnex 4199
Description: The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.)
Assertion
Ref Expression
snnex {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem snnex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vprc 3909 . . . 4 ¬ V ∈ V
2 vsnid 3426 . . . . . . . . 9 𝑧 ∈ {𝑧}
3 a9ev 1627 . . . . . . . . . 10 𝑦 𝑦 = 𝑧
4 sneq 3409 . . . . . . . . . . 11 (𝑧 = 𝑦 → {𝑧} = {𝑦})
54equcoms 1634 . . . . . . . . . 10 (𝑦 = 𝑧 → {𝑧} = {𝑦})
63, 5eximii 1533 . . . . . . . . 9 𝑦{𝑧} = {𝑦}
7 vex 2604 . . . . . . . . . . 11 𝑧 ∈ V
87snex 3957 . . . . . . . . . 10 {𝑧} ∈ V
9 eleq2 2142 . . . . . . . . . . 11 (𝑥 = {𝑧} → (𝑧𝑥𝑧 ∈ {𝑧}))
10 eqeq1 2087 . . . . . . . . . . . 12 (𝑥 = {𝑧} → (𝑥 = {𝑦} ↔ {𝑧} = {𝑦}))
1110exbidv 1746 . . . . . . . . . . 11 (𝑥 = {𝑧} → (∃𝑦 𝑥 = {𝑦} ↔ ∃𝑦{𝑧} = {𝑦}))
129, 11anbi12d 456 . . . . . . . . . 10 (𝑥 = {𝑧} → ((𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}) ↔ (𝑧 ∈ {𝑧} ∧ ∃𝑦{𝑧} = {𝑦})))
138, 12spcev 2692 . . . . . . . . 9 ((𝑧 ∈ {𝑧} ∧ ∃𝑦{𝑧} = {𝑦}) → ∃𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}))
142, 6, 13mp2an 416 . . . . . . . 8 𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦})
15 eluniab 3613 . . . . . . . 8 (𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ↔ ∃𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}))
1614, 15mpbir 144 . . . . . . 7 𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}}
1716, 72th 172 . . . . . 6 (𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ↔ 𝑧 ∈ V)
1817eqriv 2078 . . . . 5 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} = V
1918eleq1i 2144 . . . 4 ( {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V ↔ V ∈ V)
201, 19mtbir 628 . . 3 ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V
21 uniexg 4193 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
2220, 21mto 620 . 2 ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V
2322nelir 2342 1 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1284  wex 1421  wcel 1433  {cab 2067  wnel 2339  Vcvv 2601  {csn 3398   cuni 3601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-nel 2340  df-rex 2354  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-uni 3602
This theorem is referenced by:  fiprc  6315
  Copyright terms: Public domain W3C validator