| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprabidlem | GIF version | ||
| Description: Slight elaboration of exdistrfor 1721. A lemma for oprabid 5557. (Contributed by Jim Kingdon, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| oprabidlem | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑧 ∧ 𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-bndl 1439 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) | |
| 2 | ax-10 1436 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦) | |
| 3 | dtru 4303 | . . . . . 6 ⊢ ¬ ∀𝑦 𝑦 = 𝑧 | |
| 4 | pm2.53 673 | . . . . . 6 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → (¬ ∀𝑦 𝑦 = 𝑧 → ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) | |
| 5 | 3, 4 | mpi 15 | . . . . 5 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) |
| 6 | df-nf 1390 | . . . . . 6 ⊢ (Ⅎ𝑦 𝑥 = 𝑧 ↔ ∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) | |
| 7 | 6 | albii 1399 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑦 𝑥 = 𝑧 ↔ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) |
| 8 | 5, 7 | sylibr 132 | . . . 4 ⊢ ((∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) → ∀𝑥Ⅎ𝑦 𝑥 = 𝑧) |
| 9 | 2, 8 | orim12i 708 | . . 3 ⊢ ((∀𝑦 𝑦 = 𝑥 ∨ (∀𝑦 𝑦 = 𝑧 ∨ ∀𝑥∀𝑦(𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥Ⅎ𝑦 𝑥 = 𝑧)) |
| 10 | 1, 9 | ax-mp 7 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥Ⅎ𝑦 𝑥 = 𝑧) |
| 11 | 10 | exdistrfor 1721 | 1 ⊢ (∃𝑥∃𝑦(𝑥 = 𝑧 ∧ 𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∨ wo 661 ∀wal 1282 Ⅎwnf 1389 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-v 2603 df-dif 2975 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 |
| This theorem is referenced by: oprabid 5557 |
| Copyright terms: Public domain | W3C validator |