| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfov | GIF version | ||
| Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.) |
| Ref | Expression |
|---|---|
| nfov.1 | ⊢ Ⅎ𝑥𝐴 |
| nfov.2 | ⊢ Ⅎ𝑥𝐹 |
| nfov.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfov | ⊢ Ⅎ𝑥(𝐴𝐹𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfov.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | nfov.2 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐹) |
| 5 | nfov.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 7 | 2, 4, 6 | nfovd 5554 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝐴𝐹𝐵)) |
| 8 | 7 | trud 1293 | 1 ⊢ Ⅎ𝑥(𝐴𝐹𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1285 Ⅎwnfc 2206 (class class class)co 5532 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 |
| This theorem is referenced by: csbov123g 5563 ovmpt2s 5644 ov2gf 5645 ovmpt2dxf 5646 ovmpt2dv2 5654 ovi3 5657 offval2 5746 caucvgprprlemaddq 6898 nfiseq 9438 oddpwdclemdvds 10548 oddpwdclemndvds 10549 |
| Copyright terms: Public domain | W3C validator |