![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordsucg | GIF version |
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 20-Nov-2018.) |
Ref | Expression |
---|---|
ordsucg | ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucim 4244 | . 2 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
2 | sucidg 4171 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | ordelord 4136 | . . . 4 ⊢ ((Ord suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → Ord 𝐴) | |
4 | 3 | ex 113 | . . 3 ⊢ (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴)) |
5 | 2, 4 | syl5com 29 | . 2 ⊢ (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴)) |
6 | 1, 5 | impbid2 141 | 1 ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∈ wcel 1433 Vcvv 2601 Ord word 4117 suc csuc 4120 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-uni 3602 df-tr 3876 df-iord 4121 df-suc 4126 |
This theorem is referenced by: sucelon 4247 |
Copyright terms: Public domain | W3C validator |