ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcom GIF version

Theorem prcom 3468
Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
prcom {𝐴, 𝐵} = {𝐵, 𝐴}

Proof of Theorem prcom
StepHypRef Expression
1 uncom 3116 . 2 ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴})
2 df-pr 3405 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
3 df-pr 3405 . 2 {𝐵, 𝐴} = ({𝐵} ∪ {𝐴})
41, 2, 33eqtr4i 2111 1 {𝐴, 𝐵} = {𝐵, 𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1284  cun 2971  {csn 3398  {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-pr 3405
This theorem is referenced by:  preq2  3470  tpcoma  3486  tpidm23  3493  prid2g  3497  prid2  3499  prprc2  3501  difprsn2  3526  preqr2g  3559  preqr2  3561  preq12b  3562  fvpr2  5387  fvpr2g  5389  maxcom  10089  mincom  10111
  Copyright terms: Public domain W3C validator