ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prss GIF version

Theorem prss 3541
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
prss.1 𝐴 ∈ V
prss.2 𝐵 ∈ V
Assertion
Ref Expression
prss ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)

Proof of Theorem prss
StepHypRef Expression
1 unss 3146 . 2 (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶)
2 prss.1 . . . 4 𝐴 ∈ V
32snss 3516 . . 3 (𝐴𝐶 ↔ {𝐴} ⊆ 𝐶)
4 prss.2 . . . 4 𝐵 ∈ V
54snss 3516 . . 3 (𝐵𝐶 ↔ {𝐵} ⊆ 𝐶)
63, 5anbi12i 447 . 2 ((𝐴𝐶𝐵𝐶) ↔ ({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶))
7 df-pr 3405 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
87sseq1i 3023 . 2 ({𝐴, 𝐵} ⊆ 𝐶 ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶)
91, 6, 83bitr4i 210 1 ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wcel 1433  Vcvv 2601  cun 2971  wss 2973  {csn 3398  {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405
This theorem is referenced by:  tpss  3550  prsspw  3557
  Copyright terms: Public domain W3C validator