| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prsspw | GIF version | ||
| Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| prsspw.1 | ⊢ 𝐴 ∈ V |
| prsspw.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prsspw | ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prsspw.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | prsspw.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | prss 3541 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐶 ∧ 𝐵 ∈ 𝒫 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝐶) |
| 4 | 1 | elpw 3388 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐶 ↔ 𝐴 ⊆ 𝐶) |
| 5 | 2 | elpw 3388 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| 6 | 4, 5 | anbi12i 447 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐶 ∧ 𝐵 ∈ 𝒫 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 7 | 3, 6 | bitr3i 184 | 1 ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 ↔ wb 103 ∈ wcel 1433 Vcvv 2601 ⊆ wss 2973 𝒫 cpw 3382 {cpr 3399 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |