ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbiia GIF version

Theorem ralbiia 2380
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.)
Hypothesis
Ref Expression
ralbiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralbiia (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓)

Proof of Theorem ralbiia
StepHypRef Expression
1 ralbiia.1 . . 3 (𝑥𝐴 → (𝜑𝜓))
21pm5.74i 178 . 2 ((𝑥𝐴𝜑) ↔ (𝑥𝐴𝜓))
32ralbii2 2376 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wcel 1433  wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378
This theorem depends on definitions:  df-bi 115  df-ral 2353
This theorem is referenced by:  frind  4107  poinxp  4427  soinxp  4428  seinxp  4429  dffun8  4949  funcnv3  4981  fncnv  4985  fnres  5035  fvreseq  5292  isoini2  5478  smores  5930  caucvgre  9867
  Copyright terms: Public domain W3C validator