![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dffun8 | GIF version |
Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 4948. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dffun8 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun7 4948 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) | |
2 | df-mo 1945 | . . . . 5 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 → ∃!𝑦 𝑥𝐴𝑦)) | |
3 | vex 2604 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm 4550 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑥𝐴𝑦) |
5 | pm5.5 240 | . . . . . 6 ⊢ (∃𝑦 𝑥𝐴𝑦 → ((∃𝑦 𝑥𝐴𝑦 → ∃!𝑦 𝑥𝐴𝑦) ↔ ∃!𝑦 𝑥𝐴𝑦)) | |
6 | 4, 5 | sylbi 119 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐴 → ((∃𝑦 𝑥𝐴𝑦 → ∃!𝑦 𝑥𝐴𝑦) ↔ ∃!𝑦 𝑥𝐴𝑦)) |
7 | 2, 6 | syl5bb 190 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 → (∃*𝑦 𝑥𝐴𝑦 ↔ ∃!𝑦 𝑥𝐴𝑦)) |
8 | 7 | ralbiia 2380 | . . 3 ⊢ (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦) |
9 | 8 | anbi2i 444 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)) |
10 | 1, 9 | bitri 182 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∃wex 1421 ∈ wcel 1433 ∃!weu 1941 ∃*wmo 1942 ∀wral 2348 class class class wbr 3785 dom cdm 4363 Rel wrel 4368 Fun wfun 4916 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-cnv 4371 df-co 4372 df-dm 4373 df-fun 4924 |
This theorem is referenced by: funco 4960 funimaexglem 5002 funfveu 5208 |
Copyright terms: Public domain | W3C validator |