ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soinxp GIF version

Theorem soinxp 4428
Description: Intersection of linear order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
soinxp (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)

Proof of Theorem soinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poinxp 4427 . . 3 (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
2 brinxp 4426 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
323adant3 958 . . . . . . 7 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
4 brinxp 4426 . . . . . . . . 9 ((𝑥𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))
543adant2 957 . . . . . . . 8 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))
6 brinxp 4426 . . . . . . . . . 10 ((𝑧𝐴𝑦𝐴) → (𝑧𝑅𝑦𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))
76ancoms 264 . . . . . . . . 9 ((𝑦𝐴𝑧𝐴) → (𝑧𝑅𝑦𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))
873adant1 956 . . . . . . . 8 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑧𝑅𝑦𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))
95, 8orbi12d 739 . . . . . . 7 ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑧𝑧𝑅𝑦) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)))
103, 9imbi12d 232 . . . . . 6 ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
11103expb 1139 . . . . 5 ((𝑥𝐴 ∧ (𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
12112ralbidva 2388 . . . 4 (𝑥𝐴 → (∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
1312ralbiia 2380 . . 3 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦)))
141, 13anbi12i 447 . 2 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
15 df-iso 4052 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
16 df-iso 4052 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧𝑧(𝑅 ∩ (𝐴 × 𝐴))𝑦))))
1714, 15, 163bitr4i 210 1 (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661  w3a 919  wcel 1433  wral 2348  cin 2972   class class class wbr 3785   Po wpo 4049   Or wor 4050   × cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-po 4051  df-iso 4052  df-xp 4369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator