ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoini2 GIF version

Theorem isoini2 5478
Description: Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)
Hypotheses
Ref Expression
isoini2.1 𝐶 = (𝐴 ∩ (𝑅 “ {𝑋}))
isoini2.2 𝐷 = (𝐵 ∩ (𝑆 “ {(𝐻𝑋)}))
Assertion
Ref Expression
isoini2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))

Proof of Theorem isoini2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5467 . . . . . 6 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
2 f1of1 5145 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
31, 2syl 14 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1𝐵)
43adantr 270 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → 𝐻:𝐴1-1𝐵)
5 isoini2.1 . . . . 5 𝐶 = (𝐴 ∩ (𝑅 “ {𝑋}))
6 inss1 3186 . . . . 5 (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ 𝐴
75, 6eqsstri 3029 . . . 4 𝐶𝐴
8 f1ores 5161 . . . 4 ((𝐻:𝐴1-1𝐵𝐶𝐴) → (𝐻𝐶):𝐶1-1-onto→(𝐻𝐶))
94, 7, 8sylancl 404 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶):𝐶1-1-onto→(𝐻𝐶))
10 isoini 5477 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑋}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝑋)})))
115imaeq2i 4686 . . . . 5 (𝐻𝐶) = (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑋})))
12 isoini2.2 . . . . 5 𝐷 = (𝐵 ∩ (𝑆 “ {(𝐻𝑋)}))
1310, 11, 123eqtr4g 2138 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶) = 𝐷)
14 f1oeq3 5139 . . . 4 ((𝐻𝐶) = 𝐷 → ((𝐻𝐶):𝐶1-1-onto→(𝐻𝐶) ↔ (𝐻𝐶):𝐶1-1-onto𝐷))
1513, 14syl 14 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ((𝐻𝐶):𝐶1-1-onto→(𝐻𝐶) ↔ (𝐻𝐶):𝐶1-1-onto𝐷))
169, 15mpbid 145 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶):𝐶1-1-onto𝐷)
17 df-isom 4931 . . . . . . 7 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
1817simprbi 269 . . . . . 6 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
1918adantr 270 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
20 ssralv 3058 . . . . . 6 (𝐶𝐴 → (∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → ∀𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2120ralimdv 2430 . . . . 5 (𝐶𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → ∀𝑥𝐴𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
227, 19, 21mpsyl 64 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ∀𝑥𝐴𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
23 ssralv 3058 . . . 4 (𝐶𝐴 → (∀𝑥𝐴𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
247, 22, 23mpsyl 64 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
25 fvres 5219 . . . . . . 7 (𝑥𝐶 → ((𝐻𝐶)‘𝑥) = (𝐻𝑥))
26 fvres 5219 . . . . . . 7 (𝑦𝐶 → ((𝐻𝐶)‘𝑦) = (𝐻𝑦))
2725, 26breqan12d 3800 . . . . . 6 ((𝑥𝐶𝑦𝐶) → (((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦) ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
2827bibi2d 230 . . . . 5 ((𝑥𝐶𝑦𝐶) → ((𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2928ralbidva 2364 . . . 4 (𝑥𝐶 → (∀𝑦𝐶 (𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦)) ↔ ∀𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
3029ralbiia 2380 . . 3 (∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦)) ↔ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
3124, 30sylibr 132 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦)))
32 df-isom 4931 . 2 ((𝐻𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷) ↔ ((𝐻𝐶):𝐶1-1-onto𝐷 ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝑅𝑦 ↔ ((𝐻𝐶)‘𝑥)𝑆((𝐻𝐶)‘𝑦))))
3316, 31, 32sylanbrc 408 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wral 2348  cin 2972  wss 2973  {csn 3398   class class class wbr 3785  ccnv 4362  cres 4365  cima 4366  1-1wf1 4919  1-1-ontowf1o 4921  cfv 4922   Isom wiso 4923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-isom 4931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator