![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > readdcl | GIF version |
Description: Alias for ax-addrcl 7073, for naming consistency with readdcli 7132. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
readdcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addrcl 7073 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1433 (class class class)co 5532 ℝcr 6980 + caddc 6984 |
This theorem was proved from axioms: ax-addrcl 7073 |
This theorem is referenced by: 0re 7119 readdcli 7132 readdcld 7148 axltadd 7182 peano2re 7244 cnegexlem3 7285 cnegex 7286 resubcl 7372 ltleadd 7550 ltaddsublt 7671 recexap 7743 recreclt 7978 cju 8038 nnge1 8062 addltmul 8267 avglt1 8269 avglt2 8270 avgle1 8271 avgle2 8272 nzadd 8403 irradd 8731 rpaddcl 8757 iooshf 8975 ge0addcl 9004 icoshft 9012 icoshftf1o 9013 iccshftr 9016 difelfznle 9146 elfzodifsumelfzo 9210 subfzo0 9251 iserfre 9454 isermono 9457 serige0 9473 serile 9474 bernneq 9593 faclbnd6 9671 readd 9756 imadd 9764 elicc4abs 9980 caubnd2 10003 maxabsle 10090 maxabslemval 10094 maxcl 10096 mulcn2 10151 iserile 10180 climserile 10183 |
Copyright terms: Public domain | W3C validator |