ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recreclt GIF version

Theorem recreclt 7978
Description: Given a positive number 𝐴, construct a new positive number less than both 𝐴 and 1. (Contributed by NM, 28-Dec-2005.)
Assertion
Ref Expression
recreclt ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 / 𝐴))) < 𝐴))

Proof of Theorem recreclt
StepHypRef Expression
1 recgt0 7928 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
2 simpl 107 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
3 gt0ap0 7725 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0)
42, 3rerecclapd 7919 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
5 1re 7118 . . . . 5 1 ∈ ℝ
6 ltaddpos 7556 . . . . 5 (((1 / 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (1 / 𝐴) ↔ 1 < (1 + (1 / 𝐴))))
74, 5, 6sylancl 404 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) ↔ 1 < (1 + (1 / 𝐴))))
81, 7mpbid 145 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 1 < (1 + (1 / 𝐴)))
9 readdcl 7099 . . . . 5 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 + (1 / 𝐴)) ∈ ℝ)
105, 4, 9sylancr 405 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 + (1 / 𝐴)) ∈ ℝ)
11 0lt1 7236 . . . . . 6 0 < 1
12 0re 7119 . . . . . . . 8 0 ∈ ℝ
13 lttr 7185 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + (1 / 𝐴)) ∈ ℝ) → ((0 < 1 ∧ 1 < (1 + (1 / 𝐴))) → 0 < (1 + (1 / 𝐴))))
1412, 5, 13mp3an12 1258 . . . . . . 7 ((1 + (1 / 𝐴)) ∈ ℝ → ((0 < 1 ∧ 1 < (1 + (1 / 𝐴))) → 0 < (1 + (1 / 𝐴))))
1510, 14syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((0 < 1 ∧ 1 < (1 + (1 / 𝐴))) → 0 < (1 + (1 / 𝐴))))
1611, 15mpani 420 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < (1 + (1 / 𝐴)) → 0 < (1 + (1 / 𝐴))))
178, 16mpd 13 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 + (1 / 𝐴)))
18 recgt1 7975 . . . 4 (((1 + (1 / 𝐴)) ∈ ℝ ∧ 0 < (1 + (1 / 𝐴))) → (1 < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 1))
1910, 17, 18syl2anc 403 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 1))
208, 19mpbid 145 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 + (1 / 𝐴))) < 1)
21 ltaddpos 7556 . . . . . 6 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < 1 ↔ (1 / 𝐴) < ((1 / 𝐴) + 1)))
225, 4, 21sylancr 405 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < 1 ↔ (1 / 𝐴) < ((1 / 𝐴) + 1)))
2311, 22mpbii 146 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) < ((1 / 𝐴) + 1))
244recnd 7147 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
25 ax-1cn 7069 . . . . 5 1 ∈ ℂ
26 addcom 7245 . . . . 5 (((1 / 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 / 𝐴) + 1) = (1 + (1 / 𝐴)))
2724, 25, 26sylancl 404 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) + 1) = (1 + (1 / 𝐴)))
2823, 27breqtrd 3809 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) < (1 + (1 / 𝐴)))
29 simpr 108 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < 𝐴)
30 ltrec1 7966 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((1 + (1 / 𝐴)) ∈ ℝ ∧ 0 < (1 + (1 / 𝐴)))) → ((1 / 𝐴) < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 𝐴))
312, 29, 10, 17, 30syl22anc 1170 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) < (1 + (1 / 𝐴)) ↔ (1 / (1 + (1 / 𝐴))) < 𝐴))
3228, 31mpbid 145 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 + (1 / 𝐴))) < 𝐴)
3320, 32jca 300 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 / 𝐴))) < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433   class class class wbr 3785  (class class class)co 5532  cc 6979  cr 6980  0cc0 6981  1c1 6982   + caddc 6984   < clt 7153   / cdiv 7760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator