ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isermono GIF version

Theorem isermono 9457
Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by Jim Kingdon, 15-Aug-2021.)
Hypotheses
Ref Expression
isermono.1 (𝜑𝐾 ∈ (ℤ𝑀))
isermono.2 (𝜑𝑁 ∈ (ℤ𝐾))
isermono.3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℝ)
isermono.4 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))
Assertion
Ref Expression
isermono (𝜑 → (seq𝑀( + , 𝐹, ℝ)‘𝐾) ≤ (seq𝑀( + , 𝐹, ℝ)‘𝑁))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐾   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥

Proof of Theorem isermono
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isermono.2 . 2 (𝜑𝑁 ∈ (ℤ𝐾))
2 elfzuz 9041 . . . 4 (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ𝐾))
3 isermono.1 . . . 4 (𝜑𝐾 ∈ (ℤ𝑀))
4 uztrn 8635 . . . 4 ((𝑘 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
52, 3, 4syl2anr 284 . . 3 ((𝜑𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ𝑀))
6 reex 7107 . . . 4 ℝ ∈ V
76a1i 9 . . 3 ((𝜑𝑘 ∈ (𝐾...𝑁)) → ℝ ∈ V)
8 isermono.3 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℝ)
98adantlr 460 . . 3 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℝ)
10 readdcl 7099 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
1110adantl 271 . . 3 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
125, 7, 9, 11iseqcl 9443 . 2 ((𝜑𝑘 ∈ (𝐾...𝑁)) → (seq𝑀( + , 𝐹, ℝ)‘𝑘) ∈ ℝ)
13 simpr 108 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...(𝑁 − 1)))
143adantr 270 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ (ℤ𝑀))
15 eluzelz 8628 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
1614, 15syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ ℤ)
171adantr 270 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ (ℤ𝐾))
18 eluzelz 8628 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ ℤ)
1917, 18syl 14 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ ℤ)
20 peano2zm 8389 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2119, 20syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑁 − 1) ∈ ℤ)
22 elfzelz 9045 . . . . . . . . 9 (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ ℤ)
2322adantl 271 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ ℤ)
24 1zzd 8378 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 1 ∈ ℤ)
25 fzaddel 9077 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))))
2616, 21, 23, 24, 25syl22anc 1170 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))))
2713, 26mpbid 145 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))
28 zcn 8356 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
29 ax-1cn 7069 . . . . . . . . 9 1 ∈ ℂ
30 npcan 7317 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
3128, 29, 30sylancl 404 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
3219, 31syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
3332oveq2d 5548 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝐾 + 1)...((𝑁 − 1) + 1)) = ((𝐾 + 1)...𝑁))
3427, 33eleqtrd 2157 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...𝑁))
35 isermono.4 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))
3635ralrimiva 2434 . . . . . 6 (𝜑 → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹𝑥))
3736adantr 270 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹𝑥))
38 fveq2 5198 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
3938breq2d 3797 . . . . . 6 (𝑥 = (𝑘 + 1) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ (𝐹‘(𝑘 + 1))))
4039rspcv 2697 . . . . 5 ((𝑘 + 1) ∈ ((𝐾 + 1)...𝑁) → (∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹𝑥) → 0 ≤ (𝐹‘(𝑘 + 1))))
4134, 37, 40sylc 61 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 0 ≤ (𝐹‘(𝑘 + 1)))
42 fzelp1 9091 . . . . . . . 8 (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1)))
4342adantl 271 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1)))
4432oveq2d 5548 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...((𝑁 − 1) + 1)) = (𝐾...𝑁))
4543, 44eleqtrd 2157 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...𝑁))
4645, 12syldan 276 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹, ℝ)‘𝑘) ∈ ℝ)
47 fzss1 9081 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
4814, 47syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
49 fzp1elp1 9092 . . . . . . . . . 10 (𝑘 ∈ (𝐾...(𝑁 − 1)) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1)))
5049adantl 271 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1)))
5150, 44eleqtrd 2157 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...𝑁))
5248, 51sseldd 3000 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝑀...𝑁))
53 elfzuz 9041 . . . . . . 7 ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ∈ (ℤ𝑀))
5452, 53syl 14 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (ℤ𝑀))
558ralrimiva 2434 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℝ)
5655adantr 270 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℝ)
5738eleq1d 2147 . . . . . . 7 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ∈ ℝ ↔ (𝐹‘(𝑘 + 1)) ∈ ℝ))
5857rspcv 2697 . . . . . 6 ((𝑘 + 1) ∈ (ℤ𝑀) → (∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℝ → (𝐹‘(𝑘 + 1)) ∈ ℝ))
5954, 56, 58sylc 61 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6046, 59addge01d 7633 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (0 ≤ (𝐹‘(𝑘 + 1)) ↔ (seq𝑀( + , 𝐹, ℝ)‘𝑘) ≤ ((seq𝑀( + , 𝐹, ℝ)‘𝑘) + (𝐹‘(𝑘 + 1)))))
6141, 60mpbid 145 . . 3 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹, ℝ)‘𝑘) ≤ ((seq𝑀( + , 𝐹, ℝ)‘𝑘) + (𝐹‘(𝑘 + 1))))
6245, 5syldan 276 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (ℤ𝑀))
636a1i 9 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ℝ ∈ V)
648adantlr 460 . . . 4 (((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℝ)
6510adantl 271 . . . 4 (((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
6662, 63, 64, 65iseqp1 9445 . . 3 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹, ℝ)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹, ℝ)‘𝑘) + (𝐹‘(𝑘 + 1))))
6761, 66breqtrrd 3811 . 2 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹, ℝ)‘𝑘) ≤ (seq𝑀( + , 𝐹, ℝ)‘(𝑘 + 1)))
681, 12, 67monoord 9455 1 (𝜑 → (seq𝑀( + , 𝐹, ℝ)‘𝐾) ≤ (seq𝑀( + , 𝐹, ℝ)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wral 2348  Vcvv 2601  wss 2973   class class class wbr 3785  cfv 4922  (class class class)co 5532  cc 6979  cr 6980  0cc0 6981  1c1 6982   + caddc 6984  cle 7154  cmin 7279  cz 8351  cuz 8619  ...cfz 9029  seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-iseq 9432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator