ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subfzo0 GIF version

Theorem subfzo0 9251
Description: The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.)
Assertion
Ref Expression
subfzo0 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))

Proof of Theorem subfzo0
StepHypRef Expression
1 elfzo0 9191 . . 3 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
2 elfzo0 9191 . . . . 5 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
3 nn0re 8297 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
43adantr 270 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → 𝐼 ∈ ℝ)
5 nnre 8046 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
6 nn0re 8297 . . . . . . . . . . . . . 14 (𝐽 ∈ ℕ0𝐽 ∈ ℝ)
7 resubcl 7372 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝑁𝐽) ∈ ℝ)
85, 6, 7syl2an 283 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ ℕ0) → (𝑁𝐽) ∈ ℝ)
98ancoms 264 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁𝐽) ∈ ℝ)
1093adant3 958 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁𝐽) ∈ ℝ)
114, 10anim12i 331 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼 ∈ ℝ ∧ (𝑁𝐽) ∈ ℝ))
12 nn0ge0 8313 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0 → 0 ≤ 𝐼)
1312adantr 270 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → 0 ≤ 𝐼)
14 posdif 7559 . . . . . . . . . . . . 13 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐽 < 𝑁 ↔ 0 < (𝑁𝐽)))
156, 5, 14syl2an 283 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 < 𝑁 ↔ 0 < (𝑁𝐽)))
1615biimp3a 1276 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 0 < (𝑁𝐽))
1713, 16anim12i 331 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 ≤ 𝐼 ∧ 0 < (𝑁𝐽)))
18 addgegt0 7553 . . . . . . . . . 10 (((𝐼 ∈ ℝ ∧ (𝑁𝐽) ∈ ℝ) ∧ (0 ≤ 𝐼 ∧ 0 < (𝑁𝐽))) → 0 < (𝐼 + (𝑁𝐽)))
1911, 17, 18syl2anc 403 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 < (𝐼 + (𝑁𝐽)))
20 nn0cn 8298 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
2120adantr 270 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → 𝐼 ∈ ℂ)
2221adantr 270 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 ∈ ℂ)
23 nn0cn 8298 . . . . . . . . . . . 12 (𝐽 ∈ ℕ0𝐽 ∈ ℂ)
24233ad2ant1 959 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℂ)
2524adantl 271 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐽 ∈ ℂ)
26 nncn 8047 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
27263ad2ant2 960 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℂ)
2827adantl 271 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℂ)
2922, 25, 28subadd23d 7441 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → ((𝐼𝐽) + 𝑁) = (𝐼 + (𝑁𝐽)))
3019, 29breqtrrd 3811 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 < ((𝐼𝐽) + 𝑁))
3163ad2ant1 959 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℝ)
32 resubcl 7372 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐼𝐽) ∈ ℝ)
334, 31, 32syl2an 283 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼𝐽) ∈ ℝ)
3453ad2ant2 960 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ)
3534adantl 271 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℝ)
3633, 35possumd 7669 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 < ((𝐼𝐽) + 𝑁) ↔ -𝑁 < (𝐼𝐽)))
3730, 36mpbid 145 . . . . . . 7 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → -𝑁 < (𝐼𝐽))
383adantr 270 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 ∈ ℝ)
3934adantl 271 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℝ)
40 readdcl 7099 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐽 + 𝑁) ∈ ℝ)
416, 5, 40syl2an 283 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 + 𝑁) ∈ ℝ)
42413adant3 958 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 𝑁) ∈ ℝ)
4342adantl 271 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 + 𝑁) ∈ ℝ)
4438, 39, 433jca 1118 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐽 + 𝑁) ∈ ℝ))
45 nn0ge0 8313 . . . . . . . . . . . . . 14 (𝐽 ∈ ℕ0 → 0 ≤ 𝐽)
46453ad2ant1 959 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 0 ≤ 𝐽)
4746adantl 271 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 ≤ 𝐽)
485, 6anim12i 331 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
4948ancoms 264 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
50493adant3 958 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
5150adantl 271 . . . . . . . . . . . . 13 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
52 addge02 7577 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (0 ≤ 𝐽𝑁 ≤ (𝐽 + 𝑁)))
5351, 52syl 14 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 ≤ 𝐽𝑁 ≤ (𝐽 + 𝑁)))
5447, 53mpbid 145 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ≤ (𝐽 + 𝑁))
5544, 54lelttrdi 7530 . . . . . . . . . 10 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼 < 𝑁𝐼 < (𝐽 + 𝑁)))
5655impancom 256 . . . . . . . . 9 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐼 < (𝐽 + 𝑁)))
5756imp 122 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 < (𝐽 + 𝑁))
584adantr 270 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 ∈ ℝ)
5931adantl 271 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐽 ∈ ℝ)
6058, 59, 35ltsubadd2d 7643 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → ((𝐼𝐽) < 𝑁𝐼 < (𝐽 + 𝑁)))
6157, 60mpbird 165 . . . . . . 7 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼𝐽) < 𝑁)
6237, 61jca 300 . . . . . 6 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))
6362ex 113 . . . . 5 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
642, 63syl5bi 150 . . . 4 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
65643adant2 957 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
661, 65sylbi 119 . 2 (𝐼 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
6766imp 122 1 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919  wcel 1433   class class class wbr 3785  (class class class)co 5532  cc 6979  cr 6980  0cc0 6981   + caddc 6984   < clt 7153  cle 7154  cmin 7279  -cneg 7280  cn 8039  0cn0 8288  ..^cfzo 9152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153
This theorem is referenced by:  addmodlteq  9400
  Copyright terms: Public domain W3C validator