![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reapval | GIF version |
Description: Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 7688 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.) |
Ref | Expression |
---|---|
reapval | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 #ℝ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq12 3790 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 < 𝑦 ↔ 𝐴 < 𝐵)) | |
2 | simpr 108 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
3 | simpl 107 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) | |
4 | 2, 3 | breq12d 3798 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 < 𝑥 ↔ 𝐵 < 𝐴)) |
5 | 1, 4 | orbi12d 739 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
6 | df-reap 7675 | . . 3 ⊢ #ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))} | |
7 | 5, 6 | brab2ga 4433 | . 2 ⊢ (𝐴 #ℝ 𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
8 | 7 | baib 861 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 #ℝ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 = wceq 1284 ∈ wcel 1433 class class class wbr 3785 ℝcr 6980 < clt 7153 #ℝ creap 7674 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-reap 7675 |
This theorem is referenced by: reapirr 7677 recexre 7678 reapti 7679 reaplt 7688 |
Copyright terms: Public domain | W3C validator |