ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg3exmid GIF version

Theorem reg3exmid 4322
Description: If any inhabited set satisfying df-wetr 4089 for E has a minimal element, excluded middle follows. (Contributed by Jim Kingdon, 3-Oct-2021.)
Hypothesis
Ref Expression
reg3exmid.1 (( E We 𝑧 ∧ ∃𝑤 𝑤𝑧) → ∃𝑥𝑧𝑦𝑧 𝑥𝑦)
Assertion
Ref Expression
reg3exmid (𝜑 ∨ ¬ 𝜑)
Distinct variable groups:   𝜑,𝑤,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem reg3exmid
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eqid 2081 . . 3 {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}
21regexmidlemm 4275 . 2 𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}
31reg3exmidlemwe 4321 . . 3 E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}
4 pp0ex 3960 . . . . 5 {∅, {∅}} ∈ V
54rabex 3922 . . . 4 {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∈ V
6 weeq2 4112 . . . . . 6 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ( E We 𝑧 ↔ E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}))
7 eleq2 2142 . . . . . . 7 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (𝑤𝑧𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}))
87exbidv 1746 . . . . . 6 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∃𝑤 𝑤𝑧 ↔ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}))
96, 8anbi12d 456 . . . . 5 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (( E We 𝑧 ∧ ∃𝑤 𝑤𝑧) ↔ ( E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∧ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))})))
10 raleq 2549 . . . . . 6 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∀𝑦𝑧 𝑥𝑦 ↔ ∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦))
1110rexeqbi1dv 2558 . . . . 5 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∃𝑥𝑧𝑦𝑧 𝑥𝑦 ↔ ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦))
129, 11imbi12d 232 . . . 4 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ((( E We 𝑧 ∧ ∃𝑤 𝑤𝑧) → ∃𝑥𝑧𝑦𝑧 𝑥𝑦) ↔ (( E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∧ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}) → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦)))
13 reg3exmid.1 . . . 4 (( E We 𝑧 ∧ ∃𝑤 𝑤𝑧) → ∃𝑥𝑧𝑦𝑧 𝑥𝑦)
145, 12, 13vtocl 2653 . . 3 (( E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∧ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}) → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦)
153, 14mpan 414 . 2 (∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦)
161reg2exmidlema 4277 . 2 (∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦 → (𝜑 ∨ ¬ 𝜑))
172, 15, 16mp2b 8 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 661   = wceq 1284  wex 1421  wcel 1433  wral 2348  wrex 2349  {crab 2352  wss 2973  c0 3251  {csn 3398  {cpr 3399   E cep 4042   We wwe 4085
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-eprel 4044  df-frfor 4086  df-frind 4087  df-wetr 4089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator