![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp2b | GIF version |
Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
Ref | Expression |
---|---|
mp2b.1 | ⊢ 𝜑 |
mp2b.2 | ⊢ (𝜑 → 𝜓) |
mp2b.3 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
mp2b | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2b.1 | . . 3 ⊢ 𝜑 | |
2 | mp2b.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | ax-mp 7 | . 2 ⊢ 𝜓 |
4 | mp2b.3 | . 2 ⊢ (𝜓 → 𝜒) | |
5 | 3, 4 | ax-mp 7 | 1 ⊢ 𝜒 |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 7 |
This theorem is referenced by: eqvinc 2718 2ordpr 4267 regexmid 4278 ordsoexmid 4305 reg3exmid 4322 intasym 4729 relcoi1 4869 funres11 4991 cnvresid 4993 mpt2fvex 5849 df1st2 5860 df2nd2 5861 dftpos4 5901 tposf12 5907 xpcomco 6323 rec1nq 6585 halfnqq 6600 caucvgsrlemasr 6966 axresscn 7028 0re 7119 gtso 7190 cnegexlem2 7284 uzn0 8634 indstr 8681 dfioo2 8997 cnrecnv 9797 rexanuz 9874 climdm 10134 lcmgcdlem 10459 3prm 10510 sqpweven 10553 2sqpwodd 10554 |
Copyright terms: Public domain | W3C validator |