ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rel0 GIF version

Theorem rel0 4480
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0 Rel ∅

Proof of Theorem rel0
StepHypRef Expression
1 0ss 3282 . 2 ∅ ⊆ (V × V)
2 df-rel 4370 . 2 (Rel ∅ ↔ ∅ ⊆ (V × V))
31, 2mpbir 144 1 Rel ∅
Colors of variables: wff set class
Syntax hints:  Vcvv 2601  wss 2973  c0 3251   × cxp 4361  Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-in 2979  df-ss 2986  df-nul 3252  df-rel 4370
This theorem is referenced by:  reldm0  4571  cnv0  4747  cnveq0  4797  co02  4854  co01  4855  tpos0  5912  0er  6163
  Copyright terms: Public domain W3C validator