ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co01 GIF version

Theorem co01 4855
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01 (∅ ∘ 𝐴) = ∅

Proof of Theorem co01
StepHypRef Expression
1 cnv0 4747 . . . 4 ∅ = ∅
2 cnvco 4538 . . . . 5 (∅ ∘ 𝐴) = (𝐴∅)
31coeq2i 4514 . . . . 5 (𝐴∅) = (𝐴 ∘ ∅)
4 co02 4854 . . . . 5 (𝐴 ∘ ∅) = ∅
52, 3, 43eqtri 2105 . . . 4 (∅ ∘ 𝐴) = ∅
61, 5eqtr4i 2104 . . 3 ∅ = (∅ ∘ 𝐴)
76cnveqi 4528 . 2 ∅ = (∅ ∘ 𝐴)
8 rel0 4480 . . 3 Rel ∅
9 dfrel2 4791 . . 3 (Rel ∅ ↔ ∅ = ∅)
108, 9mpbi 143 . 2 ∅ = ∅
11 relco 4839 . . 3 Rel (∅ ∘ 𝐴)
12 dfrel2 4791 . . 3 (Rel (∅ ∘ 𝐴) ↔ (∅ ∘ 𝐴) = (∅ ∘ 𝐴))
1311, 12mpbi 143 . 2 (∅ ∘ 𝐴) = (∅ ∘ 𝐴)
147, 10, 133eqtr3ri 2110 1 (∅ ∘ 𝐴) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1284  c0 3251  ccnv 4362  ccom 4367  Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator