| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > co01 | GIF version | ||
| Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| co01 | ⊢ (∅ ∘ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnv0 4747 | . . . 4 ⊢ ◡∅ = ∅ | |
| 2 | cnvco 4538 | . . . . 5 ⊢ ◡(∅ ∘ 𝐴) = (◡𝐴 ∘ ◡∅) | |
| 3 | 1 | coeq2i 4514 | . . . . 5 ⊢ (◡𝐴 ∘ ◡∅) = (◡𝐴 ∘ ∅) |
| 4 | co02 4854 | . . . . 5 ⊢ (◡𝐴 ∘ ∅) = ∅ | |
| 5 | 2, 3, 4 | 3eqtri 2105 | . . . 4 ⊢ ◡(∅ ∘ 𝐴) = ∅ |
| 6 | 1, 5 | eqtr4i 2104 | . . 3 ⊢ ◡∅ = ◡(∅ ∘ 𝐴) |
| 7 | 6 | cnveqi 4528 | . 2 ⊢ ◡◡∅ = ◡◡(∅ ∘ 𝐴) |
| 8 | rel0 4480 | . . 3 ⊢ Rel ∅ | |
| 9 | dfrel2 4791 | . . 3 ⊢ (Rel ∅ ↔ ◡◡∅ = ∅) | |
| 10 | 8, 9 | mpbi 143 | . 2 ⊢ ◡◡∅ = ∅ |
| 11 | relco 4839 | . . 3 ⊢ Rel (∅ ∘ 𝐴) | |
| 12 | dfrel2 4791 | . . 3 ⊢ (Rel (∅ ∘ 𝐴) ↔ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴)) | |
| 13 | 11, 12 | mpbi 143 | . 2 ⊢ ◡◡(∅ ∘ 𝐴) = (∅ ∘ 𝐴) |
| 14 | 7, 10, 13 | 3eqtr3ri 2110 | 1 ⊢ (∅ ∘ 𝐴) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1284 ∅c0 3251 ◡ccnv 4362 ∘ ccom 4367 Rel wrel 4368 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |