| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpos0 | GIF version | ||
| Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tpos0 | ⊢ tpos ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 4480 | . . . 4 ⊢ Rel ∅ | |
| 2 | eqid 2081 | . . . . 5 ⊢ ∅ = ∅ | |
| 3 | fn0 5038 | . . . . 5 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
| 4 | 2, 3 | mpbir 144 | . . . 4 ⊢ ∅ Fn ∅ |
| 5 | tposfn2 5904 | . . . 4 ⊢ (Rel ∅ → (∅ Fn ∅ → tpos ∅ Fn ◡∅)) | |
| 6 | 1, 4, 5 | mp2 16 | . . 3 ⊢ tpos ∅ Fn ◡∅ |
| 7 | cnv0 4747 | . . . 4 ⊢ ◡∅ = ∅ | |
| 8 | 7 | fneq2i 5014 | . . 3 ⊢ (tpos ∅ Fn ◡∅ ↔ tpos ∅ Fn ∅) |
| 9 | 6, 8 | mpbi 143 | . 2 ⊢ tpos ∅ Fn ∅ |
| 10 | fn0 5038 | . 2 ⊢ (tpos ∅ Fn ∅ ↔ tpos ∅ = ∅) | |
| 11 | 9, 10 | mpbi 143 | 1 ⊢ tpos ∅ = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1284 ∅c0 3251 ◡ccnv 4362 Rel wrel 4368 Fn wfn 4917 tpos ctpos 5882 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-fv 4930 df-tpos 5883 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |