![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relopabi | GIF version |
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
relopabi.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
relopabi | ⊢ Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabi.1 | . . . 4 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | df-opab 3840 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
3 | 1, 2 | eqtri 2101 | . . 3 ⊢ 𝐴 = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
4 | vex 2604 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | vex 2604 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | opelvv 4408 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ (V × V) |
7 | eleq1 2141 | . . . . . . 7 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ (V × V) ↔ 〈𝑥, 𝑦〉 ∈ (V × V))) | |
8 | 6, 7 | mpbiri 166 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 ∈ (V × V)) |
9 | 8 | adantr 270 | . . . . 5 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝑧 ∈ (V × V)) |
10 | 9 | exlimivv 1817 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝑧 ∈ (V × V)) |
11 | 10 | abssi 3069 | . . 3 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} ⊆ (V × V) |
12 | 3, 11 | eqsstri 3029 | . 2 ⊢ 𝐴 ⊆ (V × V) |
13 | df-rel 4370 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
14 | 12, 13 | mpbir 144 | 1 ⊢ Rel 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1284 ∃wex 1421 ∈ wcel 1433 {cab 2067 Vcvv 2601 ⊆ wss 2973 〈cop 3401 {copab 3838 × cxp 4361 Rel wrel 4368 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 df-xp 4369 df-rel 4370 |
This theorem is referenced by: relopab 4482 reli 4483 rele 4484 relcnv 4723 cotr 4726 relco 4839 reloprab 5573 reldmoprab 5609 eqer 6161 ecopover 6227 ecopoverg 6230 relen 6248 reldom 6249 enq0er 6625 climrel 10119 |
Copyright terms: Public domain | W3C validator |