ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdisj GIF version

Theorem resdisj 4771
Description: A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
resdisj ((𝐴𝐵) = ∅ → ((𝐶𝐴) ↾ 𝐵) = ∅)

Proof of Theorem resdisj
StepHypRef Expression
1 resres 4642 . 2 ((𝐶𝐴) ↾ 𝐵) = (𝐶 ↾ (𝐴𝐵))
2 reseq2 4625 . . 3 ((𝐴𝐵) = ∅ → (𝐶 ↾ (𝐴𝐵)) = (𝐶 ↾ ∅))
3 res0 4634 . . 3 (𝐶 ↾ ∅) = ∅
42, 3syl6eq 2129 . 2 ((𝐴𝐵) = ∅ → (𝐶 ↾ (𝐴𝐵)) = ∅)
51, 4syl5eq 2125 1 ((𝐴𝐵) = ∅ → ((𝐶𝐴) ↾ 𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  cin 2972  c0 3251  cres 4365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369  df-rel 4370  df-res 4375
This theorem is referenced by:  fvsnun1  5381
  Copyright terms: Public domain W3C validator