![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgsrlemcl | GIF version |
Description: Lemma for caucvgsr 6978. Terms of the sequence from caucvgsrlemgt1 6971 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.) |
Ref | Expression |
---|---|
caucvgsrlemcl.f | ⊢ (𝜑 → 𝐹:N⟶R) |
caucvgsrlemcl.gt1 | ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) |
Ref | Expression |
---|---|
caucvgsrlemcl | ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsrlemcl.f | . . . . 5 ⊢ (𝜑 → 𝐹:N⟶R) | |
2 | 1 | ffvelrnda 5323 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (𝐹‘𝐴) ∈ R) |
3 | 0lt1sr 6942 | . . . . 5 ⊢ 0R <R 1R | |
4 | caucvgsrlemcl.gt1 | . . . . . 6 ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) | |
5 | fveq2 5198 | . . . . . . . 8 ⊢ (𝑚 = 𝐴 → (𝐹‘𝑚) = (𝐹‘𝐴)) | |
6 | 5 | breq2d 3797 | . . . . . . 7 ⊢ (𝑚 = 𝐴 → (1R <R (𝐹‘𝑚) ↔ 1R <R (𝐹‘𝐴))) |
7 | 6 | rspcv 2697 | . . . . . 6 ⊢ (𝐴 ∈ N → (∀𝑚 ∈ N 1R <R (𝐹‘𝑚) → 1R <R (𝐹‘𝐴))) |
8 | 4, 7 | mpan9 275 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → 1R <R (𝐹‘𝐴)) |
9 | ltsosr 6941 | . . . . . 6 ⊢ <R Or R | |
10 | ltrelsr 6915 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
11 | 9, 10 | sotri 4740 | . . . . 5 ⊢ ((0R <R 1R ∧ 1R <R (𝐹‘𝐴)) → 0R <R (𝐹‘𝐴)) |
12 | 3, 8, 11 | sylancr 405 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → 0R <R (𝐹‘𝐴)) |
13 | srpospr 6959 | . . . 4 ⊢ (((𝐹‘𝐴) ∈ R ∧ 0R <R (𝐹‘𝐴)) → ∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴)) | |
14 | 2, 12, 13 | syl2anc 403 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → ∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴)) |
15 | eqcom 2083 | . . . 4 ⊢ ([〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴) ↔ (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) | |
16 | 15 | reubii 2539 | . . 3 ⊢ (∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = (𝐹‘𝐴) ↔ ∃!𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) |
17 | 14, 16 | sylib 120 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → ∃!𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) |
18 | riotacl 5502 | . 2 ⊢ (∃!𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) | |
19 | 17, 18 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ∀wral 2348 ∃!wreu 2350 〈cop 3401 class class class wbr 3785 ⟶wf 4918 ‘cfv 4922 ℩crio 5487 (class class class)co 5532 [cec 6127 Ncnpi 6462 Pcnp 6481 1Pc1p 6482 +P cpp 6483 ~R cer 6486 Rcnr 6487 0Rc0r 6488 1Rc1r 6489 <R cltr 6493 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-2o 6025 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-enq0 6614 df-nq0 6615 df-0nq0 6616 df-plq0 6617 df-mq0 6618 df-inp 6656 df-i1p 6657 df-iplp 6658 df-iltp 6660 df-enr 6903 df-nr 6904 df-ltr 6907 df-0r 6908 df-1r 6909 |
This theorem is referenced by: caucvgsrlemfv 6967 caucvgsrlemf 6968 |
Copyright terms: Public domain | W3C validator |