![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > btwnz | GIF version |
Description: Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.) |
Ref | Expression |
---|---|
btwnz | ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl 7369 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
2 | arch 8285 | . . . 4 ⊢ (-𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ -𝐴 < 𝑧) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ -𝐴 < 𝑧) |
4 | nnre 8046 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℝ) | |
5 | ltnegcon1 7567 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴)) | |
6 | 5 | ex 113 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ ℝ → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴))) |
7 | 4, 6 | syl5 32 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ ℕ → (-𝐴 < 𝑧 ↔ -𝑧 < 𝐴))) |
8 | 7 | pm5.32d 437 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((𝑧 ∈ ℕ ∧ -𝐴 < 𝑧) ↔ (𝑧 ∈ ℕ ∧ -𝑧 < 𝐴))) |
9 | nnnegz 8354 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → -𝑧 ∈ ℤ) | |
10 | breq1 3788 | . . . . . . . 8 ⊢ (𝑥 = -𝑧 → (𝑥 < 𝐴 ↔ -𝑧 < 𝐴)) | |
11 | 10 | rspcev 2701 | . . . . . . 7 ⊢ ((-𝑧 ∈ ℤ ∧ -𝑧 < 𝐴) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴) |
12 | 9, 11 | sylan 277 | . . . . . 6 ⊢ ((𝑧 ∈ ℕ ∧ -𝑧 < 𝐴) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴) |
13 | 8, 12 | syl6bi 161 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝑧 ∈ ℕ ∧ -𝐴 < 𝑧) → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)) |
14 | 13 | expd 254 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝑧 ∈ ℕ → (-𝐴 < 𝑧 → ∃𝑥 ∈ ℤ 𝑥 < 𝐴))) |
15 | 14 | rexlimdv 2476 | . . 3 ⊢ (𝐴 ∈ ℝ → (∃𝑧 ∈ ℕ -𝐴 < 𝑧 → ∃𝑥 ∈ ℤ 𝑥 < 𝐴)) |
16 | 3, 15 | mpd 13 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ 𝑥 < 𝐴) |
17 | arch 8285 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑦 ∈ ℕ 𝐴 < 𝑦) | |
18 | nnz 8370 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℤ) | |
19 | 18 | anim1i 333 | . . . 4 ⊢ ((𝑦 ∈ ℕ ∧ 𝐴 < 𝑦) → (𝑦 ∈ ℤ ∧ 𝐴 < 𝑦)) |
20 | 19 | reximi2 2457 | . . 3 ⊢ (∃𝑦 ∈ ℕ 𝐴 < 𝑦 → ∃𝑦 ∈ ℤ 𝐴 < 𝑦) |
21 | 17, 20 | syl 14 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑦 ∈ ℤ 𝐴 < 𝑦) |
22 | 16, 21 | jca 300 | 1 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1433 ∃wrex 2349 class class class wbr 3785 ℝcr 6980 < clt 7153 -cneg 7280 ℕcn 8039 ℤcz 8351 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 ax-arch 7095 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-z 8352 |
This theorem is referenced by: lbzbi 8701 qbtwnzlemex 9259 rebtwn2z 9263 |
Copyright terms: Public domain | W3C validator |