![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexrp | GIF version |
Description: Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.) |
Ref | Expression |
---|---|
rexrp | ⊢ (∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 8736 | . . . 4 ⊢ (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) | |
2 | 1 | anbi1i 445 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝜑) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝜑)) |
3 | anass 393 | . . 3 ⊢ (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝜑) ↔ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ 𝜑))) | |
4 | 2, 3 | bitri 182 | . 2 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝜑) ↔ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ 𝜑))) |
5 | 4 | rexbii2 2377 | 1 ⊢ (∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 ∈ wcel 1433 ∃wrex 2349 class class class wbr 3785 ℝcr 6980 0cc0 6981 < clt 7153 ℝ+crp 8734 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-rab 2357 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-rp 8735 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |