![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rext | GIF version |
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.) |
Ref | Expression |
---|---|
rext | ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnid 3426 | . . 3 ⊢ 𝑥 ∈ {𝑥} | |
2 | vex 2604 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | snex 3957 | . . . 4 ⊢ {𝑥} ∈ V |
4 | eleq2 2142 | . . . . 5 ⊢ (𝑧 = {𝑥} → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ {𝑥})) | |
5 | eleq2 2142 | . . . . 5 ⊢ (𝑧 = {𝑥} → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ {𝑥})) | |
6 | 4, 5 | imbi12d 232 | . . . 4 ⊢ (𝑧 = {𝑥} → ((𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) ↔ (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥}))) |
7 | 3, 6 | spcv 2691 | . . 3 ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥})) |
8 | 1, 7 | mpi 15 | . 2 ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑦 ∈ {𝑥}) |
9 | velsn 3415 | . . 3 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
10 | equcomi 1632 | . . 3 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
11 | 9, 10 | sylbi 119 | . 2 ⊢ (𝑦 ∈ {𝑥} → 𝑥 = 𝑦) |
12 | 8, 11 | syl 14 | 1 ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1282 = wceq 1284 ∈ wcel 1433 {csn 3398 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |