ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwb GIF version

Theorem sspwb 3971
Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
sspwb (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)

Proof of Theorem sspwb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3006 . . . . 5 (𝑥𝐴 → (𝐴𝐵𝑥𝐵))
21com12 30 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
3 vex 2604 . . . . 5 𝑥 ∈ V
43elpw 3388 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
53elpw 3388 . . . 4 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
62, 4, 53imtr4g 203 . . 3 (𝐴𝐵 → (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
76ssrdv 3005 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
8 ssel 2993 . . . 4 (𝒫 𝐴 ⊆ 𝒫 𝐵 → ({𝑥} ∈ 𝒫 𝐴 → {𝑥} ∈ 𝒫 𝐵))
93snex 3957 . . . . . 6 {𝑥} ∈ V
109elpw 3388 . . . . 5 ({𝑥} ∈ 𝒫 𝐴 ↔ {𝑥} ⊆ 𝐴)
113snss 3516 . . . . 5 (𝑥𝐴 ↔ {𝑥} ⊆ 𝐴)
1210, 11bitr4i 185 . . . 4 ({𝑥} ∈ 𝒫 𝐴𝑥𝐴)
139elpw 3388 . . . . 5 ({𝑥} ∈ 𝒫 𝐵 ↔ {𝑥} ⊆ 𝐵)
143snss 3516 . . . . 5 (𝑥𝐵 ↔ {𝑥} ⊆ 𝐵)
1513, 14bitr4i 185 . . . 4 ({𝑥} ∈ 𝒫 𝐵𝑥𝐵)
168, 12, 153imtr3g 202 . . 3 (𝒫 𝐴 ⊆ 𝒫 𝐵 → (𝑥𝐴𝑥𝐵))
1716ssrdv 3005 . 2 (𝒫 𝐴 ⊆ 𝒫 𝐵𝐴𝐵)
187, 17impbii 124 1 (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 103  wcel 1433  wss 2973  𝒫 cpw 3382  {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404
This theorem is referenced by:  pwel  3973  ssextss  3975  pweqb  3978
  Copyright terms: Public domain W3C validator