| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexv | GIF version | ||
| Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| Ref | Expression |
|---|---|
| rexv | ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2354 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) | |
| 2 | vex 2604 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantrur 297 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
| 4 | 3 | exbii 1536 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) |
| 5 | 1, 4 | bitr4i 185 | 1 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 ↔ wb 103 ∃wex 1421 ∈ wcel 1433 ∃wrex 2349 Vcvv 2601 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-rex 2354 df-v 2603 |
| This theorem is referenced by: rexcom4 2622 spesbc 2899 dfco2 4840 dfco2a 4841 |
| Copyright terms: Public domain | W3C validator |