![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spesbc | GIF version |
Description: Existence form of spsbc 2826. (Contributed by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
spesbc | ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 2823 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
2 | rspesbca 2898 | . . 3 ⊢ ((𝐴 ∈ V ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ V 𝜑) | |
3 | 1, 2 | mpancom 413 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥 ∈ V 𝜑) |
4 | rexv 2617 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | |
5 | 3, 4 | sylib 120 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1421 ∈ wcel 1433 ∃wrex 2349 Vcvv 2601 [wsbc 2815 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-sbc 2816 |
This theorem is referenced by: spesbcd 2900 opelopabsb 4015 |
Copyright terms: Public domain | W3C validator |