ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spesbc GIF version

Theorem spesbc 2899
Description: Existence form of spsbc 2826. (Contributed by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
spesbc ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑)

Proof of Theorem spesbc
StepHypRef Expression
1 sbcex 2823 . . 3 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
2 rspesbca 2898 . . 3 ((𝐴 ∈ V ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ V 𝜑)
31, 2mpancom 413 . 2 ([𝐴 / 𝑥]𝜑 → ∃𝑥 ∈ V 𝜑)
4 rexv 2617 . 2 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)
53, 4sylib 120 1 ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1421  wcel 1433  wrex 2349  Vcvv 2601  [wsbc 2815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-sbc 2816
This theorem is referenced by:  spesbcd  2900  opelopabsb  4015
  Copyright terms: Public domain W3C validator