ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subval GIF version

Theorem subval 7300
Description: Value of subtraction, which is the (unique) element 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
subval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem subval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negeu 7299 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)
2 riotacl 5502 . . . 4 (∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴 → (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ)
31, 2syl 14 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ)
43ancoms 264 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ)
5 eqeq2 2090 . . . 4 (𝑦 = 𝐴 → ((𝑧 + 𝑥) = 𝑦 ↔ (𝑧 + 𝑥) = 𝐴))
65riotabidv 5490 . . 3 (𝑦 = 𝐴 → (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦) = (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴))
7 oveq1 5539 . . . . 5 (𝑧 = 𝐵 → (𝑧 + 𝑥) = (𝐵 + 𝑥))
87eqeq1d 2089 . . . 4 (𝑧 = 𝐵 → ((𝑧 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = 𝐴))
98riotabidv 5490 . . 3 (𝑧 = 𝐵 → (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
10 df-sub 7281 . . 3 − = (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦))
116, 9, 10ovmpt2g 5655 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
124, 11mpd3an3 1269 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  ∃!wreu 2350  crio 5487  (class class class)co 5532  cc 6979   + caddc 6984  cmin 7279
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280  ax-resscn 7068  ax-1cn 7069  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sub 7281
This theorem is referenced by:  subcl  7307  subf  7310  subadd  7311
  Copyright terms: Public domain W3C validator