| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbriotag | GIF version | ||
| Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) |
| Ref | Expression |
|---|---|
| csbriotag | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 2911 | . . 3 ⊢ (𝑧 = 𝐴 → ⦋𝑧 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = ⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑)) | |
| 2 | dfsbcq2 2818 | . . . 4 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | riotabidv 5490 | . . 3 ⊢ (𝑧 = 𝐴 → (℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 4 | 1, 3 | eqeq12d 2095 | . 2 ⊢ (𝑧 = 𝐴 → (⦋𝑧 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) ↔ ⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑))) |
| 5 | vex 2604 | . . 3 ⊢ 𝑧 ∈ V | |
| 6 | nfs1v 1856 | . . . 4 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 7 | nfcv 2219 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 8 | 6, 7 | nfriota 5497 | . . 3 ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
| 9 | sbequ12 1694 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 10 | 9 | riotabidv 5490 | . . 3 ⊢ (𝑥 = 𝑧 → (℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑)) |
| 11 | 5, 8, 10 | csbief 2947 | . 2 ⊢ ⦋𝑧 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
| 12 | 4, 11 | vtoclg 2658 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 [wsb 1685 [wsbc 2815 ⦋csb 2908 ℩crio 5487 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-sbc 2816 df-csb 2909 df-sn 3404 df-uni 3602 df-iota 4887 df-riota 5488 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |