ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucel GIF version

Theorem sucel 4165
Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
sucel (suc 𝐴𝐵 ↔ ∃𝑥𝐵𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem sucel
StepHypRef Expression
1 risset 2394 . 2 (suc 𝐴𝐵 ↔ ∃𝑥𝐵 𝑥 = suc 𝐴)
2 dfcleq 2075 . . . 4 (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ suc 𝐴))
3 vex 2604 . . . . . . 7 𝑦 ∈ V
43elsuc 4161 . . . . . 6 (𝑦 ∈ suc 𝐴 ↔ (𝑦𝐴𝑦 = 𝐴))
54bibi2i 225 . . . . 5 ((𝑦𝑥𝑦 ∈ suc 𝐴) ↔ (𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
65albii 1399 . . . 4 (∀𝑦(𝑦𝑥𝑦 ∈ suc 𝐴) ↔ ∀𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
72, 6bitri 182 . . 3 (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
87rexbii 2373 . 2 (∃𝑥𝐵 𝑥 = suc 𝐴 ↔ ∃𝑥𝐵𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
91, 8bitri 182 1 (suc 𝐴𝐵 ↔ ∃𝑥𝐵𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
Colors of variables: wff set class
Syntax hints:  wb 103  wo 661  wal 1282   = wceq 1284  wcel 1433  wrex 2349  suc csuc 4120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-sn 3404  df-suc 4126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator