ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inopab GIF version

Theorem inopab 4486
Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
inopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem inopab
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4482 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 relin1 4473 . . 3 (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
31, 2ax-mp 7 . 2 Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
4 relopab 4482 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
5 sban 1870 . . . 4 ([𝑤 / 𝑦]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓) ↔ ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑 ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜓))
6 sban 1870 . . . . 5 ([𝑧 / 𝑥](𝜑𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓))
76sbbii 1688 . . . 4 ([𝑤 / 𝑦][𝑧 / 𝑥](𝜑𝜓) ↔ [𝑤 / 𝑦]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓))
8 opelopabsbALT 4014 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
9 opelopabsbALT 4014 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜓)
108, 9anbi12i 447 . . . 4 ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑 ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜓))
115, 7, 103bitr4ri 211 . . 3 ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ [𝑤 / 𝑦][𝑧 / 𝑥](𝜑𝜓))
12 elin 3155 . . 3 (⟨𝑧, 𝑤⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
13 opelopabsbALT 4014 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)} ↔ [𝑤 / 𝑦][𝑧 / 𝑥](𝜑𝜓))
1411, 12, 133bitr4i 210 . 2 (⟨𝑧, 𝑤⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)})
153, 4, 14eqrelriiv 4452 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1284  wcel 1433  [wsb 1685  cin 2972  cop 3401  {copab 3838  Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369  df-rel 4370
This theorem is referenced by:  inxp  4488  resopab  4672  cnvin  4751  fndmin  5295  enq0enq  6621
  Copyright terms: Public domain W3C validator