| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbc2iedv | GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbc2iedv.1 | ⊢ 𝐴 ∈ V |
| sbc2iedv.2 | ⊢ 𝐵 ∈ V |
| sbc2iedv.3 | ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| sbc2iedv | ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc2iedv.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 3 | sbc2iedv.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 9 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ V) |
| 5 | sbc2iedv.3 | . . . 4 ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) | |
| 6 | 5 | impl 372 | . . 3 ⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) |
| 7 | 4, 6 | sbcied 2850 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| 8 | 2, 7 | sbcied 2850 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 Vcvv 2601 [wsbc 2815 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sbc 2816 |
| This theorem is referenced by: dfoprab3 5837 |
| Copyright terms: Public domain | W3C validator |