| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfoprab3 | GIF version | ||
| Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| dfoprab3.1 | ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| dfoprab3 | ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab3s 5836 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓)} | |
| 2 | vex 2604 | . . . . . 6 ⊢ 𝑤 ∈ V | |
| 3 | 1stexg 5814 | . . . . . 6 ⊢ (𝑤 ∈ V → (1st ‘𝑤) ∈ V) | |
| 4 | 2, 3 | ax-mp 7 | . . . . 5 ⊢ (1st ‘𝑤) ∈ V |
| 5 | 2ndexg 5815 | . . . . . 6 ⊢ (𝑤 ∈ V → (2nd ‘𝑤) ∈ V) | |
| 6 | 2, 5 | ax-mp 7 | . . . . 5 ⊢ (2nd ‘𝑤) ∈ V |
| 7 | eqcom 2083 | . . . . . . . . . 10 ⊢ (𝑥 = (1st ‘𝑤) ↔ (1st ‘𝑤) = 𝑥) | |
| 8 | eqcom 2083 | . . . . . . . . . 10 ⊢ (𝑦 = (2nd ‘𝑤) ↔ (2nd ‘𝑤) = 𝑦) | |
| 9 | 7, 8 | anbi12i 447 | . . . . . . . . 9 ⊢ ((𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤)) ↔ ((1st ‘𝑤) = 𝑥 ∧ (2nd ‘𝑤) = 𝑦)) |
| 10 | eqopi 5818 | . . . . . . . . 9 ⊢ ((𝑤 ∈ (V × V) ∧ ((1st ‘𝑤) = 𝑥 ∧ (2nd ‘𝑤) = 𝑦)) → 𝑤 = 〈𝑥, 𝑦〉) | |
| 11 | 9, 10 | sylan2b 281 | . . . . . . . 8 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → 𝑤 = 〈𝑥, 𝑦〉) |
| 12 | dfoprab3.1 | . . . . . . . 8 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) | |
| 13 | 11, 12 | syl 14 | . . . . . . 7 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → (𝜑 ↔ 𝜓)) |
| 14 | 13 | bicomd 139 | . . . . . 6 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → (𝜓 ↔ 𝜑)) |
| 15 | 14 | ex 113 | . . . . 5 ⊢ (𝑤 ∈ (V × V) → ((𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤)) → (𝜓 ↔ 𝜑))) |
| 16 | 4, 6, 15 | sbc2iedv 2886 | . . . 4 ⊢ (𝑤 ∈ (V × V) → ([(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓 ↔ 𝜑)) |
| 17 | 16 | pm5.32i 441 | . . 3 ⊢ ((𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓) ↔ (𝑤 ∈ (V × V) ∧ 𝜑)) |
| 18 | 17 | opabbii 3845 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} |
| 19 | 1, 18 | eqtr2i 2102 | 1 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 Vcvv 2601 [wsbc 2815 〈cop 3401 {copab 3838 × cxp 4361 ‘cfv 4922 {coprab 5533 1st c1st 5785 2nd c2nd 5786 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fo 4928 df-fv 4930 df-oprab 5536 df-1st 5787 df-2nd 5788 |
| This theorem is referenced by: dfoprab4 5838 df1st2 5860 df2nd2 5861 |
| Copyright terms: Public domain | W3C validator |