| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcie | GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| sbcie.1 | ⊢ 𝐴 ∈ V |
| sbcie.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbcie | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcie.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sbcie.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | sbcieg 2846 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 7 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 = wceq 1284 ∈ wcel 1433 Vcvv 2601 [wsbc 2815 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sbc 2816 |
| This theorem is referenced by: findcard2 6373 findcard2s 6374 ac6sfi 6379 nn1suc 8058 indstr 8681 bezoutlemmain 10387 prmind2 10502 |
| Copyright terms: Public domain | W3C validator |