ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcralg GIF version

Theorem sbcralg 2892
Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbcralg (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcralg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2818 . 2 (𝑧 = 𝐴 → ([𝑧 / 𝑥]∀𝑦𝐵 𝜑[𝐴 / 𝑥]𝑦𝐵 𝜑))
2 dfsbcq2 2818 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32ralbidv 2368 . 2 (𝑧 = 𝐴 → (∀𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
4 nfcv 2219 . . . 4 𝑥𝐵
5 nfs1v 1856 . . . 4 𝑥[𝑧 / 𝑥]𝜑
64, 5nfralxy 2402 . . 3 𝑥𝑦𝐵 [𝑧 / 𝑥]𝜑
7 sbequ12 1694 . . . 4 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
87ralbidv 2368 . . 3 (𝑥 = 𝑧 → (∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑧 / 𝑥]𝜑))
96, 8sbie 1714 . 2 ([𝑧 / 𝑥]∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑧 / 𝑥]𝜑)
101, 3, 9vtoclbg 2659 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  wcel 1433  [wsb 1685  wral 2348  [wsbc 2815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-sbc 2816
This theorem is referenced by:  r19.12sn  3458
  Copyright terms: Public domain W3C validator