![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcralg | GIF version |
Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
sbcralg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 2818 | . 2 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑)) | |
2 | dfsbcq2 2818 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | ralbidv 2368 | . 2 ⊢ (𝑧 = 𝐴 → (∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
4 | nfcv 2219 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | nfs1v 1856 | . . . 4 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
6 | 4, 5 | nfralxy 2402 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 |
7 | sbequ12 1694 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
8 | 7 | ralbidv 2368 | . . 3 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑)) |
9 | 6, 8 | sbie 1714 | . 2 ⊢ ([𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
10 | 1, 3, 9 | vtoclbg 2659 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1284 ∈ wcel 1433 [wsb 1685 ∀wral 2348 [wsbc 2815 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-sbc 2816 |
This theorem is referenced by: r19.12sn 3458 |
Copyright terms: Public domain | W3C validator |