![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbex | GIF version |
Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.) |
Ref | Expression |
---|---|
sbex | ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbexyz 1920 | . . . 4 ⊢ ([𝑤 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑤 / 𝑦]𝜑) | |
2 | 1 | sbbii 1688 | . . 3 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∃𝑥𝜑 ↔ [𝑧 / 𝑤]∃𝑥[𝑤 / 𝑦]𝜑) |
3 | sbexyz 1920 | . . 3 ⊢ ([𝑧 / 𝑤]∃𝑥[𝑤 / 𝑦]𝜑 ↔ ∃𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑) | |
4 | 2, 3 | bitri 182 | . 2 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑) |
5 | ax-17 1459 | . . 3 ⊢ (∃𝑥𝜑 → ∀𝑤∃𝑥𝜑) | |
6 | 5 | sbco2v 1862 | . 2 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∃𝑥𝜑 ↔ [𝑧 / 𝑦]∃𝑥𝜑) |
7 | ax-17 1459 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
8 | 7 | sbco2v 1862 | . . 3 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) |
9 | 8 | exbii 1536 | . 2 ⊢ (∃𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
10 | 4, 6, 9 | 3bitr3i 208 | 1 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∃wex 1421 [wsb 1685 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
This theorem is referenced by: sbabel 2244 sbcex2 2867 sbcexg 2868 |
Copyright terms: Public domain | W3C validator |