| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snexprc | GIF version | ||
| Description: A singleton whose element is a proper class is a set. The ¬ 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
| Ref | Expression |
|---|---|
| snexprc | ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc 3457 | . . 3 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 2 | 1 | biimpi 118 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 3 | 0ex 3905 | . 2 ⊢ ∅ ∈ V | |
| 4 | 2, 3 | syl6eqel 2169 | 1 ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1284 ∈ wcel 1433 Vcvv 2601 ∅c0 3251 {csn 3398 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-nul 3904 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-dif 2975 df-nul 3252 df-sn 3404 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |