ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexprc GIF version

Theorem snexprc 3958
Description: A singleton whose element is a proper class is a set. The ¬ 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.)
Assertion
Ref Expression
snexprc 𝐴 ∈ V → {𝐴} ∈ V)

Proof of Theorem snexprc
StepHypRef Expression
1 snprc 3457 . . 3 𝐴 ∈ V ↔ {𝐴} = ∅)
21biimpi 118 . 2 𝐴 ∈ V → {𝐴} = ∅)
3 0ex 3905 . 2 ∅ ∈ V
42, 3syl6eqel 2169 1 𝐴 ∈ V → {𝐴} ∈ V)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1284  wcel 1433  Vcvv 2601  c0 3251  {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-nul 3904
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-nul 3252  df-sn 3404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator