| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sotricim | GIF version | ||
| Description: One direction of sotritric 4079 holds for all weakly linear orders. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| Ref | Expression |
|---|---|
| sotricim | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sonr 4072 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
| 2 | 1 | adantrr 462 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ 𝐵𝑅𝐵) |
| 3 | 2 | 3adant3 958 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐵) |
| 4 | breq2 3789 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶)) | |
| 5 | 4 | biimprcd 158 | . . . . . 6 ⊢ (𝐵𝑅𝐶 → (𝐵 = 𝐶 → 𝐵𝑅𝐵)) |
| 6 | 5 | 3ad2ant3 961 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝐵𝑅𝐶) → (𝐵 = 𝐶 → 𝐵𝑅𝐵)) |
| 7 | 3, 6 | mtod 621 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝐵𝑅𝐶) → ¬ 𝐵 = 𝐶) |
| 8 | 7 | 3expia 1140 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐵 = 𝐶)) |
| 9 | so2nr 4076 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) | |
| 10 | imnan 656 | . . . 4 ⊢ ((𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) | |
| 11 | 9, 10 | sylibr 132 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵)) |
| 12 | 8, 11 | jcad 301 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝑅𝐵))) |
| 13 | ioran 701 | . 2 ⊢ (¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝑅𝐵)) | |
| 14 | 12, 13 | syl6ibr 160 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∨ wo 661 ∧ w3a 919 = wceq 1284 ∈ wcel 1433 class class class wbr 3785 Or wor 4050 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-po 4051 df-iso 4052 |
| This theorem is referenced by: sotritric 4079 |
| Copyright terms: Public domain | W3C validator |