ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotritric GIF version

Theorem sotritric 4079
Description: A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 28-Sep-2019.)
Hypotheses
Ref Expression
sotritric.or 𝑅 Or 𝐴
sotritric.tri ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
Assertion
Ref Expression
sotritric ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))

Proof of Theorem sotritric
StepHypRef Expression
1 sotritric.or . . 3 𝑅 Or 𝐴
2 sotricim 4078 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
31, 2mpan 414 . 2 ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶 → ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
4 sotritric.tri . . 3 ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
5 3orass 922 . . . 4 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)))
6 ax-1 5 . . . . 5 (𝐵𝑅𝐶 → (¬ (𝐵 = 𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐶))
7 pm2.24 583 . . . . 5 ((𝐵 = 𝐶𝐶𝑅𝐵) → (¬ (𝐵 = 𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐶))
86, 7jaoi 668 . . . 4 ((𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)) → (¬ (𝐵 = 𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐶))
95, 8sylbi 119 . . 3 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) → (¬ (𝐵 = 𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐶))
104, 9syl 14 . 2 ((𝐵𝐴𝐶𝐴) → (¬ (𝐵 = 𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐶))
113, 10impbid 127 1 ((𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  w3o 918   = wceq 1284  wcel 1433   class class class wbr 3785   Or wor 4050
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-po 4051  df-iso 4052
This theorem is referenced by:  nqtric  6589
  Copyright terms: Public domain W3C validator