| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spc2ev | GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| spc2ev.1 | ⊢ 𝐴 ∈ V |
| spc2ev.2 | ⊢ 𝐵 ∈ V |
| spc2ev.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spc2ev | ⊢ (𝜓 → ∃𝑥∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc2ev.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | spc2ev.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | spc2ev.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | spc2egv 2687 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝜓 → ∃𝑥∃𝑦𝜑)) |
| 5 | 1, 2, 4 | mp2an 416 | 1 ⊢ (𝜓 → ∃𝑥∃𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∃wex 1421 ∈ wcel 1433 Vcvv 2601 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: relop 4504 th3qlem2 6232 endisj 6321 axcnre 7047 |
| Copyright terms: Public domain | W3C validator |