ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcnre GIF version

Theorem axcnre 7047
Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 7087. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axcnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem axcnre
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 6987 . 2 ℂ = (R × R)
2 eqeq1 2087 . . 3 (⟨𝑧, 𝑤⟩ = 𝐴 → (⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ 𝐴 = (𝑥 + (i · 𝑦))))
322rexbidv 2391 . 2 (⟨𝑧, 𝑤⟩ = 𝐴 → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))))
4 opelreal 6996 . . . . . 6 (⟨𝑧, 0R⟩ ∈ ℝ ↔ 𝑧R)
5 opelreal 6996 . . . . . 6 (⟨𝑤, 0R⟩ ∈ ℝ ↔ 𝑤R)
64, 5anbi12i 447 . . . . 5 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ↔ (𝑧R𝑤R))
76biimpri 131 . . . 4 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ))
8 df-i 6990 . . . . . . . . 9 i = ⟨0R, 1R
98oveq1i 5542 . . . . . . . 8 (i · ⟨𝑤, 0R⟩) = (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩)
10 0r 6927 . . . . . . . . . 10 0RR
11 1sr 6928 . . . . . . . . . . 11 1RR
12 mulcnsr 7003 . . . . . . . . . . 11 (((0RR ∧ 1RR) ∧ (𝑤R ∧ 0RR)) → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
1310, 11, 12mpanl12 426 . . . . . . . . . 10 ((𝑤R ∧ 0RR) → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
1410, 13mpan2 415 . . . . . . . . 9 (𝑤R → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
15 mulcomsrg 6934 . . . . . . . . . . . . . 14 ((0RR𝑤R) → (0R ·R 𝑤) = (𝑤 ·R 0R))
1610, 15mpan 414 . . . . . . . . . . . . 13 (𝑤R → (0R ·R 𝑤) = (𝑤 ·R 0R))
17 00sr 6946 . . . . . . . . . . . . 13 (𝑤R → (𝑤 ·R 0R) = 0R)
1816, 17eqtrd 2113 . . . . . . . . . . . 12 (𝑤R → (0R ·R 𝑤) = 0R)
1918oveq1d 5547 . . . . . . . . . . 11 (𝑤R → ((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))) = (0R +R (-1R ·R (1R ·R 0R))))
20 00sr 6946 . . . . . . . . . . . . . . . 16 (1RR → (1R ·R 0R) = 0R)
2111, 20ax-mp 7 . . . . . . . . . . . . . . 15 (1R ·R 0R) = 0R
2221oveq2i 5543 . . . . . . . . . . . . . 14 (-1R ·R (1R ·R 0R)) = (-1R ·R 0R)
23 m1r 6929 . . . . . . . . . . . . . . 15 -1RR
24 00sr 6946 . . . . . . . . . . . . . . 15 (-1RR → (-1R ·R 0R) = 0R)
2523, 24ax-mp 7 . . . . . . . . . . . . . 14 (-1R ·R 0R) = 0R
2622, 25eqtri 2101 . . . . . . . . . . . . 13 (-1R ·R (1R ·R 0R)) = 0R
2726oveq2i 5543 . . . . . . . . . . . 12 (0R +R (-1R ·R (1R ·R 0R))) = (0R +R 0R)
28 0idsr 6944 . . . . . . . . . . . . 13 (0RR → (0R +R 0R) = 0R)
2910, 28ax-mp 7 . . . . . . . . . . . 12 (0R +R 0R) = 0R
3027, 29eqtri 2101 . . . . . . . . . . 11 (0R +R (-1R ·R (1R ·R 0R))) = 0R
3119, 30syl6eq 2129 . . . . . . . . . 10 (𝑤R → ((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))) = 0R)
32 mulcomsrg 6934 . . . . . . . . . . . . . 14 ((1RR𝑤R) → (1R ·R 𝑤) = (𝑤 ·R 1R))
3311, 32mpan 414 . . . . . . . . . . . . 13 (𝑤R → (1R ·R 𝑤) = (𝑤 ·R 1R))
34 1idsr 6945 . . . . . . . . . . . . 13 (𝑤R → (𝑤 ·R 1R) = 𝑤)
3533, 34eqtrd 2113 . . . . . . . . . . . 12 (𝑤R → (1R ·R 𝑤) = 𝑤)
3635oveq1d 5547 . . . . . . . . . . 11 (𝑤R → ((1R ·R 𝑤) +R (0R ·R 0R)) = (𝑤 +R (0R ·R 0R)))
37 00sr 6946 . . . . . . . . . . . . . 14 (0RR → (0R ·R 0R) = 0R)
3810, 37ax-mp 7 . . . . . . . . . . . . 13 (0R ·R 0R) = 0R
3938oveq2i 5543 . . . . . . . . . . . 12 (𝑤 +R (0R ·R 0R)) = (𝑤 +R 0R)
40 0idsr 6944 . . . . . . . . . . . 12 (𝑤R → (𝑤 +R 0R) = 𝑤)
4139, 40syl5eq 2125 . . . . . . . . . . 11 (𝑤R → (𝑤 +R (0R ·R 0R)) = 𝑤)
4236, 41eqtrd 2113 . . . . . . . . . 10 (𝑤R → ((1R ·R 𝑤) +R (0R ·R 0R)) = 𝑤)
4331, 42opeq12d 3578 . . . . . . . . 9 (𝑤R → ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩ = ⟨0R, 𝑤⟩)
4414, 43eqtrd 2113 . . . . . . . 8 (𝑤R → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨0R, 𝑤⟩)
459, 44syl5eq 2125 . . . . . . 7 (𝑤R → (i · ⟨𝑤, 0R⟩) = ⟨0R, 𝑤⟩)
4645oveq2d 5548 . . . . . 6 (𝑤R → (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)) = (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩))
4746adantl 271 . . . . 5 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)) = (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩))
48 addcnsr 7002 . . . . . . 7 (((𝑧R ∧ 0RR) ∧ (0RR𝑤R)) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
4910, 48mpanl2 425 . . . . . 6 ((𝑧R ∧ (0RR𝑤R)) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
5010, 49mpanr1 427 . . . . 5 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
51 0idsr 6944 . . . . . 6 (𝑧R → (𝑧 +R 0R) = 𝑧)
52 addcomsrg 6932 . . . . . . . 8 ((0RR𝑤R) → (0R +R 𝑤) = (𝑤 +R 0R))
5310, 52mpan 414 . . . . . . 7 (𝑤R → (0R +R 𝑤) = (𝑤 +R 0R))
5453, 40eqtrd 2113 . . . . . 6 (𝑤R → (0R +R 𝑤) = 𝑤)
55 opeq12 3572 . . . . . 6 (((𝑧 +R 0R) = 𝑧 ∧ (0R +R 𝑤) = 𝑤) → ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩ = ⟨𝑧, 𝑤⟩)
5651, 54, 55syl2an 283 . . . . 5 ((𝑧R𝑤R) → ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩ = ⟨𝑧, 𝑤⟩)
5747, 50, 563eqtrrd 2118 . . . 4 ((𝑧R𝑤R) → ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
58 vex 2604 . . . . . 6 𝑧 ∈ V
59 opexg 3983 . . . . . 6 ((𝑧 ∈ V ∧ 0RR) → ⟨𝑧, 0R⟩ ∈ V)
6058, 10, 59mp2an 416 . . . . 5 𝑧, 0R⟩ ∈ V
61 vex 2604 . . . . . 6 𝑤 ∈ V
62 opexg 3983 . . . . . 6 ((𝑤 ∈ V ∧ 0RR) → ⟨𝑤, 0R⟩ ∈ V)
6361, 10, 62mp2an 416 . . . . 5 𝑤, 0R⟩ ∈ V
64 eleq1 2141 . . . . . . 7 (𝑥 = ⟨𝑧, 0R⟩ → (𝑥 ∈ ℝ ↔ ⟨𝑧, 0R⟩ ∈ ℝ))
65 eleq1 2141 . . . . . . 7 (𝑦 = ⟨𝑤, 0R⟩ → (𝑦 ∈ ℝ ↔ ⟨𝑤, 0R⟩ ∈ ℝ))
6664, 65bi2anan9 570 . . . . . 6 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ)))
67 oveq1 5539 . . . . . . . 8 (𝑥 = ⟨𝑧, 0R⟩ → (𝑥 + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · 𝑦)))
68 oveq2 5540 . . . . . . . . 9 (𝑦 = ⟨𝑤, 0R⟩ → (i · 𝑦) = (i · ⟨𝑤, 0R⟩))
6968oveq2d 5548 . . . . . . . 8 (𝑦 = ⟨𝑤, 0R⟩ → (⟨𝑧, 0R⟩ + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
7067, 69sylan9eq 2133 . . . . . . 7 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (𝑥 + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
7170eqeq2d 2092 . . . . . 6 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩))))
7266, 71anbi12d 456 . . . . 5 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))) ↔ ((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))))
7360, 63, 72spc2ev 2693 . . . 4 (((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩))) → ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
747, 57, 73syl2anc 403 . . 3 ((𝑧R𝑤R) → ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
75 r2ex 2386 . . 3 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
7674, 75sylibr 132 . 2 ((𝑧R𝑤R) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)))
771, 3, 76optocl 4434 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wex 1421  wcel 1433  wrex 2349  Vcvv 2601  cop 3401  (class class class)co 5532  Rcnr 6487  0Rc0r 6488  1Rc1r 6489  -1Rcm1r 6490   +R cplr 6491   ·R cmr 6492  cc 6979  cr 6980  ici 6983   + caddc 6984   · cmul 6986
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-imp 6659  df-enr 6903  df-nr 6904  df-plr 6905  df-mr 6906  df-0r 6908  df-1r 6909  df-m1r 6910  df-c 6987  df-i 6990  df-r 6991  df-add 6992  df-mul 6993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator